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Abstract. The normative version of RDF Schema (RDFS) gives non-
standard (intensional) interpretations to some standard notions such as
classes and properties, thus departing from standard set-based semantics.
In this paper we develop a standard set-based (extensional) semantics
for the RDFS vocabulary while preserving the simplicity and computa-
tional complexity of deduction of the intensional version. This result can
positively impact current implementations, as reasoning in RDFS can be
implemented following common set-based intuitions and be compatible
with OWL extensions.

1 Introduction

The Resource Description Framework (RDF) [9] is the standard data model
for publishing and interlinking data on the Web. Its associated vocabulary
RDF Schema (RDFS) (classes, properties, hierarchies) gives non-standard (in-
tensional) interpretations to some standard set theoretical notions such as classes
and properties. This brings some difficulties to the reasoning systems based on
classical first-order logic (FOL). RDF enables the making of statements about
(Web) resources in the form of triples including a subject, a predicate and an
object expressed in manifold vocabularies. Efforts like the Linked Open Data
project [8] give a glimpse of the magnitude of RDF data today available.

In many application scenarios, there is the need to have on top of RDF
data a language to structure knowledge domains. To cope with this aspect, the
Web Consortium developed standard vocabularies such as RDF Schema (RDFS)
and OWL. RDFS was designed with a minimalist philosophy and it includes
essentially the machinery for expressing subclass, subproperty, type and such.
On the other hand, OWL is a more expressive language that includes a much
richer set of features.

From a standardization point of view the current normative RDFS has two
weaknesses. First, the interpretations of basic notions such as subclass and sub-
property do not have the usual set-based meaning. For example, in in Fig. 1,
even though :birthCity is a subproperty :birthPlace, one cannot derive the
fact that the range of the property :birthCity must be :Place. Second, the
normative semantics of RDFS and OWL differ for some of their common vocabu-
laries. RDFS, for historical reasons, follows an intensional semantics while OWL
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Fig. 1. An RDFS graph taken from dbpedia.org showing compatibility problems be-
tween OWL and RDFS. The dotted arrow is valid in OWL while not in RDFS.

adopts a standard extensional set-based semantics. This intensional semantics
of RDFS brings compatibility problems with OWL. In the example considered
shown in Fig. 1, the dotted rdfs:range property is a valid set-based deduction,
thus valid in OWL, while not derivable in RDFS.

The designers of RDFS were aware of this problem, and added in a “non-
normative” status the standard set-based semantics and some sound inference
rules for it. This so-called “extensional” version of RDFS corresponds exactly
to the standard set-based interpretation of the vocabulary (and thus is fully
compatible with OWL). The rationale for keeping a weaker (intensional) seman-
tics for RDFS was efficiency: “In some ways the extensional versions provide a
simpler semantics, but they require more complex inference rules. The ’inten-
sional’ semantics [...] provides for most common uses of subclass and subproperty
assertions, and allows for simpler implementations of a complete set of RDFS
entailment rules.” (W3C RDFS Semantics Spec., [7]). According to this specifi-
cation, RDFS inference engines develop following the intensional semantics.

Thus, two relevant problems regarding the natural extensional RDFS seman-
tics have prevented its usage: i) What is the complexity overload associated to
the extensional semantics for RDFS?; ii) Can normative RDFS inference engines
(based on the computation of a completion in a forward-chaining manner) be
easily extended to support extensional RDFS, and at which cost?

Contributions. This paper answer both question in the positive. First, we pro-
vide a simple sound and complete proof system for the extensional semantics of
RDFS. Second, we show that a meaningful completion of the graph computed
by using the rules in a forward-chaining manner can still be computed in poly-



nomial case (as for intensional RDFS) thus spurring on current system that use
completion. These two results can be seen as founding the ground for the devel-
oping of the extensional semantics for the RDFS vocabulary while preserving the
simplicity and computational complexity of deduction of the intensional case.

Our results can be considered as an extension of intensional RDFS. Our re-
sults address not only an interesting theoretical open problem, but could impact
on current implementations (for the most part based on the normative inten-
sional semantics) in a positive sense. Indeed, we show that reasoning in RDFS
can follow common set-based intuitions and be compatible with OWL extensions.
Moreover, we show that the rule system that we present is easily embeddable in
existing libraries such as Jena.

2 Preliminaries

The Resource Description Framework (RDF) [9] and RDF Schema (RDFS) are
the W3C’s standard data model for the publishing and interlinking of data on
the Web. In RDF only simple statements about resources can be expressed via
triples: a resource may be an instance of another resource (representing a class
typing the instance) and/or a property of another resource. RDFS augments
RDF with some minimal vocabulary, allowing to express hierarchies of classes
and properties and to restrict the domain and range of properties. As an example
of an RDFS graph, see Fig. 1. In what follow we will give a simple presentation
abstracted from implementation (e.g., namespace) details.

Let U , L, B three pairwise disjoint sets representing the set of URIs, literals
and blank nodes, respectively. For simplicity, we denote unions of these sets by
simply concatenating their names.

Definition 1 (RDF triple, graph). An RDF triple t is a tuple of the form
(s, p, o) ∈ (UB)×U×(UBL), where s, p, o are called subject, predicate and object,
respectively. A triple is ground if it does not contain blank nodes. A (ground)
RDF graph G is a set of RDF (ground) triples. The vocabulary of G, denoted
voc(G), is the set of elements in UBL that occurs in its triples.

The ρdf fragment
In this work we will concentrate on a simple and small fragment of RDFS,
which includes only the special RDFS vocabulary type, property, subClass,
subProperty, domain and range. This fragment is called ρdf and was intro-
duced first in [11]. It has been shown to capture the essential semantics of the
full fragment, while avoiding to deal with minor idiosyncrasies. In the following,
we will denote its vocabulary as Vρdf = {sc, sp, dom, range, type}. As it has been
shown in [11], ρdf is self-contained as it does not rely on the RDFS vocabulary
beyond this subset. ρdf is endowed with a set of inference rules that preserves
the original RDFS semantics restricted to this vocabulary [10].

The Intensional (Normative) Semantics
The normative semantics of RDFS [7] is built upon the standard logic notions of



model, interpretation and entailment. In the following we rephrase the normative
model theory of RDFS using first-order logic (FOL) in the spirit of [4]. The
signature of the language includes a ternary predicate T –to represent RDF
triples – and two unary predicates C and P that will represent the membership of
individuals to “rdfs:Class” and “rdf:Property”, respectively. It can be proved
that, given a ρdf graph {(s1, p1, o1), · · · , (sn, pn, on)}, its models according the
the normative RDFS model theory in the W3C specification [4] are the same as
the models of the FOL formula ∃b T (s1, p1, o1) ∧ · · · ∧ T (sn, pn, on), where b is
the set of blank node symbols appearing in the graph, under the FOL theory
specified by the axioms listed below.
The basic axioms primitively define subClass, subProperty, domain, range in
terms of type in the obvious way –as in set theory4:

∀a, b (a, sc, b) −→ C(a) ∧ C(b) ∧ ∀x (x, type, a)→ (x, type, b) (1)

∀a, b (a, sp, b) −→ P (a) ∧ P (b) ∧ ∀x, y (x, a, y)→ (x, b, y) (2)

∀a, c (a, dom, c) −→ ∀x, y (x, a, y)→ (x, type, c) (3)

∀a, d (a, range, d) −→ ∀x, y (x, a, y)→ (y, type, d) (4)

To cope with reflexivity and transitivity of the subclass and subproperty relations
we have also the following axioms:

∀a, b, c (a, sc, b) ∧ (b, sc, c) −→ (a, sc, c) (5)

∀a C(a) −→ (a, sc, a) (6)

∀a, b, c (a, sp, b) ∧ (b, sp, c) −→ (a, sp, c) (7)

∀aP (a) −→ (a, sp, a) (8)

The following typing axioms are also needed in normative RDFS:

∀a, b (a, dom, b) −→ P (a) ∧ C(b) (9)

∀a, b (a, range, b) −→ P (a) ∧ C(b) (10)

∀a, b (a, type, b) −→ C(b) (11)

∀a, b, c (a, b, c) −→ P (b) (12)

P (sc) ∧ P (sp) ∧ P (dom) ∧ P (range) ∧ P (type) (13)

The above axioms define the semantics for the subClass, subProperty, domain
and range predicates.

It is important to observe that rdfs:subClass, rdfs:subProperty, rdfs:
domain, rdfs:range are defined only by means of necessary properties according
to the above axioms: the semantics of normative RDFS is a quite weak one, since
the RDFS vocabulary does not express fully the corresponding relations in set
theory. As a matter of facts, given the RDFS graph from Fig. 1, according the
normative RDFS semantics the statement (:birthCity, rdfs:range, :Place) is
not entailed. Such an entailment is expected since people do read the properties

4 Note that for simplicity we may omit the T symbol in FOL formulas.



in the RDFS vocabulary as the corresponding set-based relations – just like in
OWL. The normative RDFS semantics is called intensional, since it is unable to
define sets in terms of their elements.

The Extensional (Non-normative) Semantics
The W3C specification [7] introduces in a “non-normative”status an extensional
version of RDFS, in which subClass, subProperty, domain, range are defined
precisely as having the usual set theoretical meaning. This is achieved by adding
to the previous definition of the RDFS semantics the missing implication (left-
direction arrows) in axioms (1) to (4), thus getting axioms (14) to (17). Thus,
axioms (1) to (17) define the semantics of the non-normative extensional RDFS
restricted to the ρdf vocabulary. Note that axioms (1) to (8) are redundant, since
they can be derived from axioms (9) to (17). From now on we will refer to the
non-normative version of RDFS restricted to the ρdf vocabulary as ρdf+.

∀a, b (a, sc, b)←→ C(a) ∧ C(b) ∧ ∀x (x, type, a)→ (x, type, b) (14)

∀a, b (a, sp, b)←→ P (a) ∧ P (b) ∧ ∀x, y (x, a, y)→ (x, b, y) (15)

∀a, c (a, dom, c)←→ ∀x, y (x, a, y)→ (x, type, c) (16)

∀a, d (a, range, d)←→ ∀x, y (x, a, y)→ (y, type, d) (17)

This (extensional) semantics – which follows exactly the obvious extensional
definitions of the corresponding set-based operators – has been disregarded by
the W3C working group because of some computational problems that were con-
jectured during the definition of the specification. In the non normative section
of the W3C specification only a set of incomplete inference rules for extensional
RDFS is provided.

As for the relations with other KR formalisms, and with the family of de-
scription logics in particular, notice that it is easy to see that ρdf+ without
typing exactly corresponds to the DL-LiteH{core,pos,safe}, namely the well known

DL-LiteH{core} description logic [2, 1] without negation and unqualified existen-
tial restrictions on the right-hand side of the inclusion axioms. Obviously, DL-
LiteH{core,pos,safe} includes the normative RDFS. It is easy to see that the usual
unqualified number restrictions of DL-Litecore, once on the left-hand side of the
inclusion axioms, can be used to encode the rdfs:domain and rdfs:range state-
ments, while rdfs:subClass and rdfs:subProperty are nothing but usual DL
concept and role inclusion axioms, respectively.

Although the semantics of RDFS dates back to 2004 and despite the large
amount of research around it, there were still some important open problems
concerning extensional RDFS: i) whether a sound and complete system of infer-
ence rules existed; ii) whether a polynomial algorithm for computing the com-
pletion according to these extensional rules existed; iii) whether the problem of
entailment checking, crucial for query answering, can still be done in the same
complexity bound as for intensional RDFS. In this paper we tackle these three
problems and provide positive answers to each of them.



3 Reasoning with ρdf+: A forward-chaining system

This section presents a set of sound and complete inference rules for ρdf+ that
captures the extensional semantics of RDFS. Our findings complement the set of
rules in the ρdf fragment with additional rules derived from the analysis of axioms
(14)-(17). The complete set of rules is presented in Table 1. For example, the
missing deduction in Fig. 1 can be done now with rule 4(b) with the instantiations
A =birthCity, B =birthPlace and C =Place.

We will need some definitions for the discussion that follows. We follow the
notations of [11].

Definition 2 (Instantiations and maps).

1. An instantiation of a rule is a uniform replacement of the meta variables
occurring in the triples of the rule with elements in UBL, such that all the
triples obtained after the replacement are well-formed RDF triples.

2. A map is a function µ : UBL → UBL preserving URIs and literals i.e.,
µ(u) = u for all u ∈ UL. Given a graph G we define µ(G) = {(µ(s), µ(p), µ(o)) :
(s, p, o) ∈ G}. By abusing notation, we speak of a map µ from a graph G1 to
a graph G2 and write µ : G1 → G2 if µ is such that µ(G1) is a subgraph of G2.

Definition 3 (Proof). Let G and H be graphs. We say that G `ρdf+ H iff there
exists a sequence of graphs P1, P2, . . . , Pk, with P1 = G and Pk = H, and for
each j (2 ≤ j ≤ k) one of the following cases hold:

– there exists a map µ : Pj → Pj−1 (rule 8),
– there is an instantiation R

R′ of one of the rules (1)–(7) in Table 1 such that
R ⊆ Pj−1 and Pj = Pj−1 ∪R′.

The sequence of rules used at each step (plus its instantiation or map), is called
a proof of H from G.

The ρdf+ system of rules extends the ρdf system [11] by the rules 3(b), 3(c),
4(b), 4(c) and (7). The following theorem states the soundness and completeness
of `ρdf+.

Theorem 1 (Soundness and completeness). Let |=ρdf+ denote the entail-
ment relation for the extensional ρdf+ semantics obtained from the axioms (1)-
(17). Then, the proof system `ρdf+ (rules in Table 1) is sound and complete for
this extensional semantics; that is, for G and H graphs in ρdf+, then G `ρdf+
H iff G |=ρdf+ H.

Proof. The proof is available in the Appendix. ut

Although the natural consequence of Theorem 1 would be that of dropping
the intensional (weaker) semantic conditions in the normative semantics and
replacing them with the extensional (stronger), it is still necessary to investi-
gate whether ρdf+ brings in some source of complexity when applied to the



1. Subclass:

(a) (A,sc,B) (X,type,A)
(X,type,B)

(b) (A,sc,B) (B,sc,C)
(A,sc,C)

2. Subproperty:

(a) (A,sp,B) (X,A,Y )
(X,B,Y )

(b) (A,sp,B) (B,sp,C)
(A,sp,C)

3. Domain:

(a) (A,dom,B) (X,A,Y )
(X,type,B)

(b) (A,sp,B) (B,dom,C)
(A,dom,C)

(c) (A,dom,B) (B,sc,C)
(A,dom,C)

4. Range:

(a) (A,range,B) (X,A,Y )
(Y,type,B)

(b) (A,sp,B) (B,range,C)
(A,range,C)

(c) (A,range,B) (B,sc,C)
(A,range,C)

5. Subclass Reflexivity:

(a) (A,sc,B)
(A,sc,A) (B,sc,B)

(b) (X,p,A)
(A,sc,A)

for p ∈ {dom, range, type}

6. Subproperty Reflexivity:

(a) (X,A,Y )
(A,sp,A)

(b) (A,sp,B)
(A,sp,A) (B,sp,B)

(c)
(p,sp,p)

for p ∈ ρdf

(d) (A,p,X)
(A,sp,A)

for p ∈ {dom, range}

7. Extensional:

(type,sp,A) (A,dom,B) (X,sc,X)
(X,sc,B)

8. Simple:

G
G′ for a map µ : G′ → G

Table 1. The `ρdf+ rule system for ρdf+. Capital letters A, B, C, X, and Y , stand
for meta-variables to be replaced by actual terms in UBL.

following important reasoning tasks: i) computation of the closure; ii) checking
of entailment, crucial for query answering.

Computational properties of ρdf+
The deductive closure of a graph G is the graph obtained by adding to G all
triples that are derivable from G. It can be computed by applying systematically
and recursively the inference rules in Table 1 to all the triples of G. The deductive
closure of a ρdf+ graph is in principle infinite, due to the rule 8, which possibly
introduces new blank nodes. In order to get a finite but still useful completion of
the graph we can consider the closure of G over the same vocabulary of G, that is,
by adding only triples derivable from G which have elements in voc(G)∪Vρdf. We



will denote this restricted closure by clg(G) be the ground closure (or completion)
of a graph G as the closure via the `ρdf+ ground rule system (rules (1)-(7) in
Table 1).

By observing that the number of existing triples with vocabulary in voc(G)∪
Vρdf is of the order O(|G|3), and that all new triples in the closure of G will be
obtained by a successive applications of the rules of the proof system, we obtain
the following result:

Proposition 1 (Closure complexity). The size of the ground closure of a
ρdf graph clg(G) is at most O(|G|3) and it can be computed in polynomial time.

We will now present a result which states how ρdf+ entailment can be con-
structively reduced to computing (possibly offline) and materialising the finite
polynomial completion of the data graph and then by querying the completion
with a standard RDF simple entailment query engine. Note that this is the very
same procedure which is used in real systems for the standard normative RDFS
entailment – of course with the reduced set of normative RDFS inference rules.

Proposition 2 (Entailment for ρdf+). Consider two RDFS graphs G (data)
and H (pattern). Then G |=ρdf+ H iff clg(G) |=RDFsimple

H.

Proof. By the completeness theorem, G `ρdf+ H, which by definition of the clo-
sure is equivalent to clg(G) `ρdf+ H, which means that H is in the completion
clg(G), unless there is an application of rule 8. In this case, H is got by using
the RDF simple entailment in the entailment checking –because of the homo-
morphism checking. ut

It can be easily seen that the combined complexity of entailment (in the size
of both graphs) is exactly the same as for normative RDFS and the ρdf system,
which is polynomial if H is a ground graph, and NP-hard otherwise [11]. On the
other hand, the data complexity of entailment (that is, only in the size of the
data graph G) is polynomial [4].

Materializing all data by computing the completion may cause a waste of
space if most of it is never really used. Deciding whether applying materialization
or checking entailment on the fly with a specific algorithm depends on different
factors such as: i) size of the graph: some graphs may not fit in the main memory
and then the completion cannot be avoided; ii) updates: removing a triple from
the graph, causes implicit data to still exist if no special care is taken to remove
it. Hence, materialization vs. on the fly checking is a trade-off between the better
performance of updates, or better performance of look-ups. For this purpose we
have studied a refutation proof system provably sound and complete for ρdf+
based on tableaux calculus, which in addition to ρdf+ deals also with negative
atoms in the data graph. Such a system, which we do not present here, is used
to check entailment on the fly whenever it is not convenient to materialise the
completion (see [5] for further details).



4 Reasoning with extensional RDFS in practice

The aim of this section is to illustrate with simple examples the practical impact
of extensional RDFS reasoning. We discuss how the `ρdf+ system of rules can
be embedded into the Apache Jena library and the impact that it has on the
computation of the completion of an RDFS graph.

The Jena inference engine
Jena is a comprehensive Semantic Web library providing a set of features for
data management and reasoning in OWL and RDFS. The library features four
predefined reasoning engines: i) transitive reasoner, which just considers transi-
tive and reflexive properties of RDFS sc and sp; ii) a configurable RDFS rule
reasoner ; iii) a configurable OWL reasoner ; iv) a custom reasoner. This latter
reasoner enables to provide a custom set of inference rules; it supports three
reasoning strategies: i) one implementing the RETE algorithm; ii) a forward
reasoner ; iii) a backward reasoner.

The availability of the custom reasoner is at the core of the integration of the
ground ρdf+ rule system; we have not implemented rule 7, since we assume that
data graphs do not redefine rdf:type, that is, they do not have it in subject
nor object position. As an example the rule 3 (c) in Table 1 is specified in Jena
as: [3c: (?a dom ?b), (?b sc ?c)->(?a dom ?c)]. The specification follows the
pattern [label: Ant ->Cons] where label is a name assigned to the rule, Ant
is the antecedent and Cons the consequent. It is also worth mentioning that the
reasoner can be configured to log derivations so that each triple obtained after
the reasoning task has associated an “explanation”, that is, the reasoning steps
(in terms of rules triggered) that led to the triple. The reader can consult the
Web page https://jena.apache.org/documentation/inference for further
details.

Comparing inferences at schema level
We investigated the impact of ρdf+ on the completion of five existing ontologies.
This experiment only considers triples at schema level; as discussed previously,
we do not need to analyze derived rdf:type triples, since they would be the
same as the rdf:type triples derived by a normative RDFS reasoner. Table 2
provides some information about the ontologies considered.

Ontology #Classes #Properties #dom #range #sc #sp

DBpedia 359 1775 1505 1553 369 -

FOAF 24 51 47 46 15 10

NEPOMUK 399 628 535 561 460 258

MusicOnto 70 97 97 97 68 25

VoxPopuli 140 66 61 78 140 -

Table 2. Statistics about the ontologies considered.



Fig. 2. Size of the completions.

The considered ontologies have different sizes; they range from small on-
tologies such as FOAF (Friend-of-a-Friend) or MusicOnto (Music Ontology) to
relatively large ontologies like NEPOMUK and DBpedia. None of these (real-
life) ontologies includes RDF triples redefining the RDFS vocabulary, that is,
containing the ρdf vocabulary in subject or object position. Fig. 2 shows some
statistics about the completion of the ontologies by considering the ρdf (inten-
sional RDFS) and ground ρdf+ (extensional RDFS) rule systems. The compar-
ison between the completions in terms of number of triples is also shown . As it
can be observed with ρdf+ we obtain a larger number of triples. This is due to
the presence of the rules 3(b), 3(c), 4(b) and 4(c) in Table 1 that enable to derive
new rdfs:domain and rdfs:range relations. The largest number was obtained
when considering DBpedia (∼4000 rdfs:domain and ∼ 1200 rdfs:range). The
extensional completion contains an increase of triples of the order of 30% for
DBpedia and NEPOMUK, 60% for VoxPopuli, 20% for FOAF and 5% for Mu-
sicOnto. Fig. 3 reports the times (in ms) taken to compute the completion.
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In the extensional case more time is needed because of the presence of addi-
tional inference rules. However, it can be observed that the time remains around
60ms with a large schema like DBpedia.

In order to give a hint on the kind of derivations enabled via ρdf+, Fig. 4
shows two examples from DBpedia. In Fig. 4 (a) it is shown the new rdfs:range

for the property :beltwayCity obtained by applying rule 4 (c). Fig. 4 (b) shows
the derivation of a new rdfs:domain for the property :prospectTeam obtained
via rule 3(c).

d:Settlement

d:beltwayCity      d:City

rdfs:subClassOf

rdfs:range

rdfs:range

(a)

    d:Athlete

d:prospectTeam    d:IceHockeyPlayer

rdfs:subClassOf

rdfs:domain

rdfs:domain

(b)

d: <http://dbpedia.org/ontology> rdfs: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Fig. 4. Examples of new derivations with ρdf+

5 Related Work

There is a solid body of research on RDFS. A formalisation of RDF regarding
databases issues was done by Gutierrez et al. [6]. Marin [10] and ter Horst [12]
came up with counterexamples (see Fig. 1) which, though pointing to the in-
completeness of the W3C RDF Semantics specification rules, showed an issue
belonging to the intensional approach to RDFS. The merit of Marin was to
overcome the issue keeping the original rules, and adding two additional ones,
and proved that the new set of rules was sound and complete. ter Horst instead
modified the rule system by allowing non-legal RDFS triples within the rule
system by using blank nodes in the predicate position. The formalization of the
semantics of RDF in FOL has been studied by de Brujin et al. [4]. Muñoz et
al. [11] introduced the ρdf fragment; this paper also discusses the quadratic lower
bound for the size of the completion of a graph G pointing out how such size is
impractical from a database point of view. To cope with this issue, the authors
introduce minimal RDFS, which imposes restrictions on the occurrence of the
RDFS vocabulary (it can only occur in predicate position). The advantage of
minimal RDFS is that there exists an efficient algorithm to check graph entail-
ment in the case of ground graphs. They also showed that if triples contain at
most one blank node the bound remains the same.

The common ground of these approaches is that they stick with the norma-
tive specification, that is, intensional RDFS. Other approaches such as RDF-F-
Logic [13] depart from the normative specification. Finally, yet other approaches



focus on the interplay between RDFS and other ontology languages such as
OWL (e.g., RDFS(DL) [3]) and the family of description logics DL-Lite [2, 1]. In
contrast to the above approaches, our goal in this paper is to provide a bridge
between the normative (intensional) and non normative (extensional) parts of
the RDFS specification, and study systematically the latter.

6 Conclusions

In this paper we investigated the extensional semantics for RDFS. Based on the
non-normative specification given in the standard W3C RDF semantics speci-
fication [7], we develop proof systems that show that one can get a practical,
efficient and simple system for the extensional version of RDFS.

We answered an open problem since the publishing of the W3C RDF Seman-
tics [7], which asked for the existence of a simple and efficient system of rules to
codify extensional RDFS entailment. The results presented in the paper showed
that providing a set of sound and complete inference rules for extensional RDFS
is possible, and the complexity of computing the completion of an RDFS graph
remains the same as in the normative case.

Our results will impact on current reasoning libraries (e.g., Jena) for RDFS
that now can obtain more inferences at no significantly additional cost, as em-
phasized by our evaluation. Last, but not least, this extensional version aligns
the semantics of RDFS and OWL, which previously were inconsistent due to the
different meanings given by each of them to set-based notions such as subclass
and subproperty.
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11. S. Muñoz, J. Pérez, and C. Gutierrez. Simple and efficient minimal RDFS. Journal
of Web Semantics, 7(3):220–234, 2009.

12. H. J ter Horst. Completeness, decidability and complexity of entailment for RDF
schema and a semantic extension involving the OWL vocabulary. Web Semantics:
Science, Services and Agents on the World Wide Web, 3(2):79–115, 2005.

13. G. Yang and M. Kifer. Reasoning about anonymous resources and meta statements
on the semantic web. In Journal on Data Semantics I, pages 69–97. Springer, 2003.

Appendix: Proof of Theorem 1

The following provides a sketch of the argument that proves the completeness
of the `ρdf+ rule system: For graphs G and H in the ρdf+ vocabulary:

G `ρdf+ H iff G |=ρdf+ H.

While the soundness theorem (from left to right) follows straightforwardly from
the observation that each rule in `ρdf+ preserves validity, the completeness the-
orem (from right to left) requires more effort to be proved. The proof is heavily
based in the completeness theorem for the similar (intensional) `ρdf system given
in [11]. The notions of |=ρdf and `ρdf can be found in that paper. First, we need
some auxiliary notion of extended closure.

Definition 4. The extended closure of a graph G, denoted ĉl(G), is the set of
triples entailed from G under ρdf entailment (|=ρdf) plus the axioms (14) - (17).

We now rephrase ĉl(G) using the `ρdf rule system instead of |=ρdf entailment.

Lemma 1. The extended closure of a graph G is the set of triples derived from
G using `ρdf plus the axioms (14) - (17).

Proof. Use the known fact (Theorem 8 from [11]) that, if graphs G and H are
in the ρdf vocabulary, G `ρdf H iff G |=ρdf H. ut



The next lemma is at the key to the proof of the theorem:

Lemma 2 (Main). If graphs G and H are in the ρdf vocabulary, then

ĉl(G) `ρdf H iff G `ρdf+ H.

From Lemma 1 above it follows that we only have to show how each triple
derived with the axioms (14) - (17) can be also derived with `ρdf+ and vice-versa.

The strategy aims at showing, through an exhaustive combinatoric analysis,
that whatever can be derived by the axioms (14) to (17) can be derived with
the `ρdf+ rule system as well. There are two operations working at the syntactic
level: axiom instantiation and pattern matching. By means of these operations
one can start combining together the axioms, until no more new syntactically
well formed sentences are derivable. The proof strategy then is grounded on the
fact that the only significant ways the axioms can be combined together give
rise to nothing but the atoms that are present in the `ρdf+ system. Note that
we can restrict to the case when H is one atom, because for ground atoms p, q
it holds Σ |= p ∧ q iff Σ |= p and Σ |= q.

Proof. We will introduce for convenience auxiliary extended deductive rules al-
lowing “implications” in the antecedent or in the consequent. This allows to
codify formulas (14)-(17) as follows:

14a (A,sc,B)

(x,type,A)
∀x−→(x,type,B) 14b (A,sc,A)∧(B,sc,B)∧(x,type,A)

∀x−→(x,type,B)
(A,sc,B) (sc)

15a (P,sp,Q)

(x,P,y)
∀xy−→(x,Q,y) 15b (A,sc,A)∧(B,sc,B)∧(x,P,y)∀xy−→(x,Q,y)

(P,sp,Q) (sp)

16a (P,dom,A)

(x,P,y)
∀xy−→(x,type,A) 16b (x,P,y)

∀xy−→(x,type,A)
(P,dom,A)

(domain)

17a (P,range,A)

(x,P,y)
∀xy−→(y,type,A) 17b (x,P,y)

∀xy−→(y,type,A)
(P,range,A)

(range)

The following are a few remarks to be made on the usage of this new system:

1. Rules with an implication in the antecedent (being universally quantified)
cannot be fired from the graph G because of the presence of the open world
assumption, we cannot know from G if it is valid or not.

2. Two implications can be matched if the meaning of the formulas allow so.

For example, (x, type, A)
∀x−→ (x, type, B) and (y, type, B)

∀y−→ (y, type, C)
would produce another rule:

(x, type, A)
∀x−→ (x, type, B) (y, type, B)

∀y−→ (y, type, C)

(z, type, A)
∀z−→ (z, type, C)

(18)

3. The only way to use an implication in a combination of rules is, either:



Instantiation/Combination Rule obtained Rule in ρdf+ Rule in RDFS

(15a-inst)y16ay14b (type,sp,A),(A,dom,B),(X,sc,X)
(X,sc,B)

7 not available

(16a-inst)y14by14a (type,dom,A),(X,sc,X)
(X,sc,A)

7 bis not available

Table 3. Inference rules obtained by instantiating and combining rules (14a)-(17a).
Rule 7bis can be obtained in turn from 7 and 6c, thus does not appear in Table 1

(a) To combine it with another implication to derive a third implication
(e.g., to form rules of the form (18)). Table 4 summarizes the only ad-
missible results one can obtain out the combination operation (we use
the notation r1 y r2 to indicate that rule r1 is combined with rule r2).
Note that the only possible relevant formula one could get with this pro-
cedure is a formula of the type ∀x(x, type, A) → (x, type, B), thus, to
deduce a triple of the form (u, sc, v) using rule (14b). Note also that
one cannot use the rules (15b), (16b) or (17b), because they need both
variables universally quantified.

(b) To instantiate the implication in the consequent, and using the Deduc-
tion Theorem (p ` q→r iff p, q ` r). Consider for instance rule (14a); we

have: (A, sc, B) ` (x, type, A)
∀x−→ (x, type, B). By using the deduction

theorem, we obtain: (A, sc, B) (x, type, A) ` (x, type, B). By systemat-
ically applying this process to rules (14a)-(17a), we obtain the rules in
Table 5.

(c) To use instantiation that make it possible to combine rules. For example
the new rule 7 Extensional follows from rule (15a) instantiated with
P = type, which combined with the rule for domain (16a), gives the
implication ∀x(x, type, y) → (x, type, B), which using rule (14b) gives
(y, sc, B) for y class. Table 3 shows the results of the application of the
instantiation-plus-combination operation.

Combination Rule obtained Rule in `ρdf+ Rule in intensional RDFS

14ay14a (A,sc,B) (B,sc,C)
(A,sc,C)

1b rdfs 11

15ay15a (P,sp,Q) (Q,sp,R)
(P,sp,R)

2b rdfs 5

15ay16a (P,sp,Q) (Q,dom,A)
(P,dom,A)

3b not available

15ay17a (P,sp,Q) (Q,range,A)
(P,range,A)

4b not available

16ay14a (P,dom,A) (A,sc,B)
(P,dom,B)

3c not available

17ay14a (P,range,A) (A,sc,B)
(P,range,B)

4c not available

Table 4. Inference rules obtained by combining rules (14a)-(17a)

The presented proof system is the collection of all rules obtained. In particu-
lar, an exhaustive combinatorics indicates that the only possible cases are those
considered in ρdf+. The idea is as follows:



Rule Instantiated Rule obtained Rule in ρdf+ Rule in intensional RDFS

13a (A,sc,B) (X,type,A)
(X,type,B)

1a rdfs 9

14a (P,sp,Q) (X,P,Y )
(X,Q,Y )

2a rdfs 7

15a (P,dom,A) (X,P,Y )
(X,type,A)

3a rdfs 2

16a (A,range,B) (X,A,Y )
(Y,type,B)

4a rdfs 3

Table 5. Set of inference rules obtained by instantiating rules (14a)-(17a)

1. Note that the only possible relevant formula one could get with the intro-
duced procedure is a formula of the type ∀x(x, type, A) → (x, type, B),
thus, to deduce a triple of the form (u, sc, v) using rule (14b). Note that one
cannot use the other rules (15b), (16b) or (17b), because they need both
variables universally quantified.

2. With (1) in mind, one should start looking for the successful combinations.
(a) Those that begin with (x, type, y): could be rules (15a), (16a) or (17a) in-

stantiated with P = type. As for Rule (15a), we should instantiate also
y = C, but in this case the rule will give ∀x(x, type, C) → (x,Q,C),
whose consequent cannot be further combined unless Q = type, which
gives nothing. As for rule (16a), it gives our rule 7bis, while rule (17a)
is useless for this argument (notice that in (17a) the y in the implica-
tion changes its position from third to first thus making impossible the
combination with (14b)).

(b) Those that end with (x, type, y): here rule (16a) is relevant once y is
instantiated to a constant; and rules (16a) and (17a) with the restriction
x = y. It is not difficult to note that the first case is useful only for
the instantiation P = type. In the second case, the only productive
combination is to combine it with rule (15a) weakened to x = y. ut

Now are read to prove the statement of Theorem 1:

Proof. G |=ρdf+ H
iff G |=RDFS+ H (by definition of |=ρdf+)
iff G ∪ {axioms 14− 17} |=RDFS H (by definition of RDFS+)

iff ĉl(G) |=RDFS H (by Definition 4)

iff ĉl(G) |=ρdf H (Theorem 5 from [11]) because left and right hand sides have
only ρdf vocabulary)

iff ĉl(G) `ρdf H (Soundness and completeness of ρdf –Theorem 8 from [11]–
because there is only ρdf vocabulary)

iff G `ρdf+ H (by Lemma 2).
ut


