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Abstract. Automation of service composition is one of the most interesting chal-
lenges facing the Semantic Web and the Web of services today. Despite ap-
proaches which are able to infer a partial order of services, its data flow remains
implicit and difficult to be automatically generated. Enhanced with formal rep-
resentations, the semantic links between output and input parameters of services
can be then exploited to infer their data flow. This work addresses the problem of
effectively inferring data flow between services based on their representations. To
this end, we introduce the non standard Description Logic reasoning join, aiming
to provide a “constructive evidence” of why services can be connected and how
non trivial links (many to many parameters) can be inferred in data flow. The
preliminary evaluation provides evidence in favor of our approach regarding the
completeness of data flow.

Keywords: Semantic Web, Web Service, Service Composition, Data Flow, Auto-
mated Reasoning, Non Standard Reasoning.

1 Introduction

The Semantic Web [1] is considered to be the future of the current Web. In the Seman-
tic Web, Web services [2] are enhanced using rich description languages e.g., OWL
the Web Ontology Language [3]. The underlying descriptions, expressed by means of
Description Logic (DL) concepts [4] in domain ontologies, are used to describe the
semantics of services e.g., their functional inputs, outputs parameters. Intelligent soft-
ware agents can, then, use these descriptions to reason about Web services and automate
their use to accomplish goals specified by the end-user including intelligent tasks e.g.,
discovery, selection, composition and execution.

We focus on composition and more specially on its data flow i.e., links (or con-
nections) which explain how data is exchanged among services (Right Panel in Fig.1).
While most approaches [5, 6] derive control flow of compositions (i.e., a partial order
on services - Left Panel in Fig.1) according to a goal to achieve, its data flow remains
implicit [7] through opaque and pre-defined assignments from incoming to outgoing
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services. Usually it is up to developers to provide their details e.g., through BPEL (Busi-
ness Process Execution Language) assign types or filtering/merging operators. Existing
approaches mainly focus in ordering services in a control flow rather than generating
its data flow in an automated way. The latter limits flexibility of service oriented com-
puting [8]. Therefore the following are example of open questions in the Web of service
community: how to dynamically re-generate data flow specification of “built-in” com-
positions in case of late change of services? Which data is required from which services
to turn a composition in its executable state? Does it require data transformation from
one description to another? This work investigates the benefits of having semantic de-
scriptions of services a la SA-WSDL [9], OWL-S [10] or WSMO [11] to derive a data
flow description of any control flow-based service composition in an automated way.

Towards these issues, some methods [12] exploit expressive DLs to link services
through their descriptions, impacting the tractability of the approach. Other approaches
[13] limit the expressivity of description through syntactic representation, making data
flow very difficult to be automatically derived. In both contexts, complex data links
(e.g., filtering, merging) between services cannot be generated in an automated way,
providing either abstract or incomplete composition specification. Despite some efforts
for pre-defining [14] and inferring [15, 16] compatibilities between services parame-
ters, it remains difficult to derive how data is actually “flowing” from one description
to another. In addition, data flow is mainly studied between single outputs and inputs
(aka. trivial links). Such links are not appropriate for modeling data flow of complex
compositions, limiting their application in real world scenarios. This work tackles this
problem.
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Fig. 1. Control Flow (Left) vs. Data Flow (Right) Views.

Suppose some Semantic Web services' being organized in a partial order (based on
their overall goals): how to effectively infer their non trivial data flow (e.g., filtering,
merging). First of all we define non standard DL reasoning join to provide a “con-
structive evidence” of why services can be connected and how non trivial links can be
inferred in data flow. The concept join is required to exhibit descriptions J from output
parameters Out (of services) which properly ensure Out to be compatible with any
input parameter In (of services). In other words the description J is constructed for
“glue”-ing outputs and inputs parameters of services, and more importantly used for
understanding how data is flowing among services in a composition. Then we describe

! Polymorphic services (i.e., exposing several functions depending on inputs combinations) are
not investigated here, but can be addressed though conditional compositions [6].



how non trivial data flow can be generated, checked and repaired using concept join in
order to ensure flexible data flow construction. Service descriptions are formalized in
ELTT, where subsumption and satisfiability are decidable [17]. For the sake of clarity,
we assume compositions without open preconditions. Our work assumes that relevant
services are already identified and discovered [18]. Control [7] and data flow [19] based
composition techniques, combined with the method introduced in the paper, are then
applied to derive ready-to-be-executed compositions.

The remainder of this paper is organized as follows. First of all we summarize data
flow-oriented composition, its semantic links and limits. Then we present the DL rea-
soning join to provide a “constructive evidence” of why services can be connected. The
next sections (i) describe how join can be adapted to simulate and construct complex
data flow, and (ii) report some experimental results through comparisons with state-of-
the-art approaches. Finally we comment on related work and draw some conclusions.

2 Data Flow-oriented Service Composition

2.1 Service, Semantic Link and Composition

In the Semantic Web, input and output parameters of services are described accord-
ing to a common ontology or Terminology 7 (e.g., Fig.2), where the OWL-S profile,
WSMO capability or SA-WSDL can be used as encoding?, also known as fixed data
type or description. Semantic links [19] are defined between output and input parame-
ters of services, based on semantic similarities of their DL encoding. Fig.2 sketches a
description of the axioms that are used in the ontology in which the input and output
parameters are expressed. Similarities are judged using a matching function between
two knowledge representations encoded using the same terminology.

NetwConnection = AnetSpeed.Speed // Netw: NetworkConnection
Speed = AmBytes.NoNilSpeed, HighReliable C Reliable
SlowNetwConnection = NetwConnection M InetSpeed.Adsl1 M
U S Provider = 3to.US, UK Provider = 3to.UK, UKMUS C L
EU Provider = 3to.EU, UK C EU, EUNUS C 1, Business T T
AdslIM = Speed M3ImBytes. 1M, 1M C NoNilSpeed

Fig.2. DL ££*" Axioms used for representing Output and Input Parameters.

In this context, data flow-oriented service composition consists in retrieving seman-
tic links sl; ;:
sli j = (s;, Simy(Out, In), s;) ()

between an output parameter Out of service s; and input parameter In of service s;,
where both Out and In are DL descriptions. Thereby s; and s; are partially linked
according to a matching function Sim, specifying its data flow. Given a terminology

% In case of multiple ontologies used for services descriptions, alignment techniques [20] need
to be investigated.



T, the range of Sim is determined by five matching types following [21, 22]: i) Exact
i.e., Out = In, ii) Plugln i.e., Out C In, iii) Subsume i.e., In C Out, iv) Intersection
ie.,, 7(Out M In C 1) and v) Disjoint i.e., Out M In C L. The cases i)-iv) identify
compatible descriptions while the case v) identifies incompatible descriptions Out and
In.

2.2 Limitations

As stated in Introduction, models such as (1) are mainly considered for representing
trivial semantic links i.e., (boolean) one-to-one compatibility (though matching types)
between single output and input parameters. Towards this issue, we generalize (1) by
considering In and Out respectively as a conjunction of inputs and outputs of services.
Semantic links between “any” output and input at a time i.e., non trivial data flow, can
be then represented in (1), which is more appropriate for modeling complex data flow.

However such a model is still limited to understand how data is “flowing” from
services to services. Indeed, how data is properly manipulated and adapted between
services to ensure data flow? Which part of services descriptions is the most relevant?
Is it maximal, minimal, effective and how? These are general questions which remain
open in the join domains of Semantic Web and Web of services.

This work suggests concept join as a constructive reasoning to provide a “construc-
tive evidence” of why services can be connected and how complex data flow can be
inferred in services composition.

3 Towards Constructive Evidence of Data Flow

Towards the issue of explaining why services can be connected and how non trivial
links can be inferred in data flow, Section 3.1 introduces the innovative concept join
(Definitions 1, 2 and Propositions 1,2) between data descriptions. Section 3.2 follows
the methodology of [23] and [24] to prove the computational complexity of the join rea-
soning. In particular Proposition 3 is inspired from [23], but highly adapted to concept
join (which constructs different descriptions - see Section 6.2). Section 3.3 combines in
an innovative way state-of-the-art abduction (Definition 3) and contraction (Definition
4) reasoning techniques to extend the applicability of concept join in a (i) context of
service composition, and (ii) when Proposition 1 does not hold (Algorithm 2). Impor-
tantly, Section 3.3 explains how non standard reasoning abduction and contraction can
be used for enriching the number of joins between services in a composition.

3.1 Concept Join: Definitions and Propositions

We are interested in descriptions in Out which ensure Out and In to be compatible.
Therefore we aim at extracting J (Join - Definition 1) from Out such that J C In
remains true in 7 (Definition 1). The descriptions R (Remainder), part of Out, such
that Out = R M J will need to be removed from Out since they move Out away from
In under subsumption . J highlights descriptions which could be properly joined
with I'n in order to compose outputs Out and inputs I while R points out descriptions
which are not required by In.



Definition 1 (Concept Join)

Let L be a DL, Out, In be two concepts in L, and T be a set of axioms in L such
that T = Out M In C L. A Concept Join Problem, denoted as C' JP (L, Out,In,T)
(shortly Out w In) is finding a pair of concepts (R, J) € L X L such thati) T |=
Out = RN Jandii) T | J C In. Then J (or » 1), which is not symmetric, is a join
between Out and In in T .

We use P as a symbol fora CJP (L, Out, In, T) and we denote with SOLC'JP(P)
the set of all solutions of the form (R, .J) to a CJP P.1Incase T = Out C In, the
CJ P P has no solution at all, as stated formally in Proposition 1.

Proposition 1. (No Solution of a CJP)
Let P = (L,0ut,In, T) be a CJP such that T [~ Out C In. The set SOLC JP(P)
is defined by (.

Proof. Since Out can be rewritten as R M J (condition (i) in Definition 1) with R = T
and J = Out without loss of generality, then 7 = Out C In (Proposition 1) becomes
T £ J C In. The latter contradicts 7 = J C In (condition (ii) in Definition 1), so no
possible solution of a CJP P in case T = Out C In.

T |= Out C In implies that there is always the trivial solution (T, Out) toa C.JP
(L, 0ut,In, T).

Proposition 2. (Trivial Solution of a C'JP)
IfOut = Inin T then (T,0Out)y € SOLCJP((L,Out, In,T)).

This case refers to an exact composition [25] of services s; and s;: if we want to
proceed s, all outputs Qut of s; are required (since J is defined by Out in Proposition
2) to achieve all input In of s;. Then, no description R has to be removed from Out.
On the other hand, when Out C In (ie., 7 = Out C Inand T [~ Out = In),
(T, Out) is also one potential solution of the C'J P problem. However, other solutions
with R not being T are possible. Obviously, in order to achieve a composition between
Out and In the first case (in Proposition 2) is in a much better shape than the second
one. Indeed all descriptions In, which are required by s;, are provided by Out. If we
want to use join to highlight the closest descriptions in Out (i.e., the most general) to
In, emphasising the most compatible descriptions in Out for In to compose s; and s;,
“effective” joins under C 7 need to be defined (Definition 2 adapted from [26]).

Definition 2 (Effective Join Solution)

LetP = (L,0ut, In,T) beaCJP. The set SOLCJPc(P) is the subset of SOLC' JP(P)
whose join concepts J are maximal under Cr. The set SOLCJ P<(P) is the subset of
SOLC JP(P) whose join concepts have minimum length.

Formally the set SOLCJ P ('P) satisfies both Definition 1 and the following con-
dition: V(R',J') € LX L : T EOut = RNJ AT J CIn=J CJ.
Maximality under C is considered as a effectiveness criterion since no unnecessary
joins is assumed between Out and In.



Example 1 (Effective Join Solution - Fig.3)

Let s1 be an InternetEligibility service which returns as output Out: the Net-
workConnection (e.g., Speed, UK Country) of a desired geographic zone together with
information about its network provider (Reliability, Business type). Let so be another
telecom service which requires a Reliable network provider in UK as input In to be
executed. Out and In, as DL representations of functional parameters in Fig.3, ensure
Out C IninT. Onthe one hand InetSpeed. Adsl1M M Fto.UK C NetwConnection.
On the other hand HighReliable C Reliable. In other words some outputs produced
by s1 can be consumed by some inputs of so. The effective join J of Out and In (under
C ) is InetSpeed.Adsi1M M to.U K M HighReliable while the discarded descrip-
tion R is Business. An instance of J is then required to instantiate In (and execute
s2): SlowNC (NC refers to NetwConnection), Ito.U K, Reliable while an instance
of Business is not. The description J acts as a filter between s1, ss to restrict Out over
the data flow. In other words J establishes which descriptions are relevant to link Out
to In. The two output instances of s1 are then practically merged into one instance for
So through the construction of J.The latter ensures the executability of so.

c InetSpeed. AdsI1M-~3 " PO BRRRREES .-

S h Join T
Eag M 3to.UK smmreR ---.NC M 3netSpeed.Adsl1 M
RIS Rt RN |2
-3 5 Q| HighReliable- .- Y N1 Reliable

= N Business-~ Discarded

S: Service ---> Detailed Semantic Link — Input Parameter —- Output Parameter

Fig. 3. Effective Join Solution.

In [26] it was proven that <-minimality is more appropriate for conciseness, but
largely depending on 7. Indeed, by simply adding axioms A = R and B = J, we
obtain a <-minimal solution (A, B) for each pair (R, J) € SOLCJP(P).

3.2 Computational Complexity

Since concept join can be considered as an extension of concept subsumption with
respect to a TBox, its lower bounds carry over to decision problems related to a C'.J P.

Proposition 3. (Deciding Existence of Join)

Let P = (L,Out, In, T) be a CJP. If concept subsumption with respect to a T in L
is a problem C-hard for a complexity class C, then deciding whether a pair of concepts
(R,J) € L x L belongs to SOLCJP(P) is C-hard.

Proof. Since T |= Out C Iniff (T, Out) € SOLCJP(P), such a problem is C-hard.

Inour ££17 context, deciding whether a pair of concepts (R, J) belongs to SOLC-
JP(P) is PTIME-hard [27] with respect to both acyclic and cyclic TBoxes 7.

Regarding upper bounds, a simple result can be derived from the fact that (T, Out)
is always a solution of the CJP (L, Out, In,T) if Out C In in T (Proposition 2) al-
though not always an effective one for join. Following [23], a total length-lexicographic



order <., can be defined over concepts as follows: given two concepts Out, In € L,
let Out <e, In if either |Out| < |In|, or both |Out| = |In| and Out is lexicographi-
cally before In. Based on this total order, an approach for finding a <-minimal solution
of a C'J P, using polynomial space relatively to an oracle for subsumption in L, is pre-
sented in Algorithm 1. Algorithm 1 is innovative as it enumerates concept join solutions
over a total length-lexicographic ordered concepts.

Algorithm 1: Effective » ; ofa C.JP.

1 Input: ACJP P = (L,0ut,In,T) with T = Out C In.

2 Result: A concept z € L such that (R, z) € L X Lisin SOLCJP<(P).
3 begin

4 x < T;// Initialisation
5

6

7

while |z| < |Out| do
if T EOut Cxand T =z C Inthen

L return x;
8 x < next concept following x in <jez;
9 x < Out; return Out;

Algorithm 1 uses polynomial space (considering one call to subsumption as an ora-
cle) since it just tries all concepts with less symbols than Out, and returns Out if it does
not find a shorter solution. Thus, it provides an upper bound on the complexity of C'J P,
depending on the complexity class to which subsumption in £ belongs to. Although this
result does not directly lead to a practical algorithm, it provides an upper bound on the
complexity of the problem, hence on the complexity of every optimal algorithm.

Theorem 1. (Finding a Solution in SOLCJP<(P))

Let P = (L,0ut,In, T) be a CJP. If concept subsumption with respect to a T in
L belongs to a complexity class C that is included in PSPACE then finding a pair of
concept in SOLC JP<(P) is a problem in PSPACE. Otherwise if PSPACE is included
in C, then finding a pair of concept in SOLC'J P<(P) is a problem in C.

According to Theorem 1, inspired from [26], finding a pair of concept for the prob-
lem SOLC.JP=(P) in EL7" is in PSPACE. Theorem 1 simply builds on top of the
subsumption properties.

3.3 Incompatible Descriptions in Concept Join

As highlighted by Proposition 1, Definition 1 has no solution if 7 £ Out C In.
This limits the applicability of concept join by restricting services to exchange data
(from Out to In) only under Out T In in 7. Even if this is a basic requirement to
compose and join services, other potential compositions, which do not satisfy Out T
In [25], would be ignored since their join cannot be derived. Towards this issue, we
exploit constructive DL reasoning abduction [28] (Definition 3) and contraction [24]
(Definition 4) to respectively consider join if i) In does not subsume Out but have a
consistent conjunction i.e., 7 K& OutMIn C L and ii) their conjunction is inconsistent



ie., T = OutMNIn C 1. While concept abduction derives description which is missing
in Out to be subsumed by In, concept contraction [24] retracts specification G (for Give
up) in Out to obtain a concept K (for Keep) such that K M In is satisfiable in 7. The
latter extends abduction to unsatisfiable conjunction of Out and In.

Definition 3 (Concept Abduction)

Let L be a DL, Out, In be two concepts in L, and T be a set of axioms in L such that
T = Out M In © 1. A Concept Abduction Problem: In\Out is finding a concept
H e Lsuchthat T OutNH = 1,andT = OutNHC In.

Similarly to concept join, abduction extends subsumption. It also constructs a con-
cept H to ensure Out M H be subsumed by In. By computing description H using
abduction, join can be derived between Out M H (instead of Out) and In. Abduc-
tion is then required to enlarge the scope of Definition 1 i.e., from Out T In to
—(OutNInC L)inT.

Contraction, which extends satisfiability, aims to retract specification G (for Give
up) in Out to obtain a concept K (for Keep) such that K M In is satisfiable in 7.

Definition 4 (Concept Contraction)

Let L be a DL, Out, In be two concepts in L, and T be a set of axioms in L where both
Out and In are satisfiable in T. A Concept Contraction Problem, denoted as In_ Out
is finding a pair of concepts (G, K) € L x L such that T = Out = G K and
T ¥ KNiInC L Then K (or 1k ) is a contraction of Out according to In and T.

By computing (1) contraction L a part of Out which ensures Lg M In to be sat-
isfiable in 7 (i.e., validating conditions of Definition 3), and then (2) abduction In\ ik
which ensures g M (In\Lk) C In, join can be derived between Lk M (In\ k) and In.
Thus contraction can be applied to enlarge the scope of Definition 1: from Out C In
toOutMInC LinT.

Algorithm 2 sketches the approach to enlarge the scope of Definition 1. It ensures
that Out and In can be joined by iteratively weakening and strengthening Out through
contraction and abduction. Besides the case already supported by Propositions 1 and 2
and its extension to Out C In (line 6), abduction (lines 10, 14) is applied if Out M In
is consistent (line 9) in 7. Alternatively contraction (line 13) is required beforehand
(line 12). The most specific contraction is considered to obtain a description as close as
possible to Out. Thus, the join is derived between (1) Out and In in the trivial case
Out C In (line 6), (2) Out M (In\Out) and Inif T = Out M In = L (line 9) and (3)
(ImagOut) M (In\(InagOut)) and In if T = Out N In C 1 (line 12).

The complexity of Algorithm 2 is in PSPACE in ££7 . Indeed lines 6, 9, 12 are in
PTIME [17], line 13 is in PTIME (Theorem 4 in [24]), lines 10, 14 are in PSPACE
(Theorem 1 in [28]), line 15 is in PSPACE (Theorem 1).

4 Composing Services with Concept Join

We present how concept join can be used to compose properly services through complex
data flow modelling.



4.1 Join-ing Data and Descriptions of Services

Compositions of any outputs Out with inputs In can be derived using Algorithm 2. The
data flow is established by joining their descriptions. In case their join cannot be derived
(lines 9 and 12), we apply contraction and abduction to identify data descriptions which
need to be removed/added from/to outputs Out of services with respect to inputs In.

Algorithm 2: Computing Join (Case 7 (£ Out C In).

1 Input: ACJP P = (L,0ut, In, T).

2 Result: A pair (R, J) € £ x £ whichisin SOLCJPc(P).
3 begin

4 H <+ T; /Initialisation

5

6

7

// Trivial Case of Subsumption between Out and In.
if T = Out C In then
L ; // Propositions 1, 2 and its Extension to Out C In.

8 // Extension to Consistent Conjunction | T = Out C In.

9 else if 7 =~ Out M In C L then

10 L H + In\Out; // Abduction

11 // Extension to Inconsistent Conjunction of Out and In.
12 else if 7 = Out M In C 1 then

13 Out <+ (InixOut); // Contraction

14 L H «+ In\Out; // Abduction

15 (R, J) <~ SOLCJP(L,Out M H,In,T); // Min. Join
16 return (R, J);

In some cases, Semantic Web services consumed and produced data that does not
fit its static semantic description, making semantics of data not as precise as it should
be. In this context, we proceed as following: (1) detecting the most accurate semantic
description of concrete data values following [20]), (2) expanding the domain ontology
with this new description, mainly for reasoning purpose, and (3) applying Algorithm 2
at run time to obtain joins. The steps (1) and (2) ensures that the reasoning at description
level (through Algorithm 2) is also valid at a lower (i.e., data) level. This case of non-
alignment between data and their description justifies and reinforces the use of non
standard reasoning to capture composition. Indeed, more inconsistent joins could occur,
limiting the applicability of pure equivalence-based approaches [16].

4.2 Simulating Complex Data Flow Operators

Definition 1, as a way to identify (semantic) link-“able” descriptions in composition,
can be used to simulate/infer complex data flow operators e.g., “Data Filter”, “Merge”.
Their benefit is twofold: modeling and explaining how services and their data can be
properly manipulated and adapted in data flow-oriented composition. Contrary to [25,
16, 6], among others, automated generation, verification and repair of complex data



flow in composition can be enabled once integrated in a composition engine [29]. In the
following the symbol » will denote the problem in Definition 1 where both (i) effective
join solutions (Definition 2) and (ii) maximality under C 7 are considered.

e Data Filter: [14] commonly used the data filter operator in data flow-oriented
service composition to i) extract some descriptions Y and ii) block the rest In from
an incoming description X with respect to a filter (description) Z (see illustration in
Fig.4). This operator is simulated by X » Z and its solution (In,Y). X C Z since Z
is used as a filter for X. The effectiveness condition (Definition 2) is crucial to avoid
any undesired data in Y e.g., In. The more specific the filter Z (i.e., the closer to X),
the less descriptions blocked by Z (the leastis T).

Example 2 (Data Filter - Fig.4 a))

Let Y be defined by Fto.UK and D be defined by Business. The descriptions Y and
D are respectively extracted and blocked from description X i.e., 3to.U K I Business
using the filter Z, defined by 3to. FU. Each data instance from X is split along Y and
D. Only instance of X is connected to Y.

o Data Merge: In [7] it is used to aggregate descriptions X; and X into a descrip-
tion Y with respect to a filter Z (see illustration in Fig.4). If X; and X are compatible,
this operator can be simulated by (X;MX5) » Z and its solution (In,Y). X1MX, C Z
since Z is used as a filter for X; and Xs. In refers to descriptions which are blocked
from X, and X with respect to Z. In case XXy = Z, all descriptions from X; M X9
are merged, ensuring In to be T i.e., none of descriptions in X M X is blocked from
Y. A generalization to n descriptions to merge is straightforward.

Filter Z: 3to.EU Filter Z: dnetSpeed.Speed M to.UK
Y X1: InetSpeed.Adsl1 M- 3‘: Y:
X: 3o UK Fto.UK ||X,: FtoUK X I—» InetSpeed. Adsl1 M
M Business M Reliable Q;A M 3Jto.UK
D: Business D: Reliable
a) Data Filter b) Data Merge

Fig. 4. Simulation of Data Filter and Merge with Join.

Example 3 (Data Merge - Fig.4 b))

InetSpeed.Adsi1M M Fto.UK is the merging description of X1, Xo in Fig.4 b) us-
ing the filter InetSpeed.Speed M to.U K while Reliable is the description which is
blocked.

Based on a straightforward extension of Algorithm 2 with effective concept join,
most common complex data flow operators e.g., Data Merge, Filter can be derived
in any data flow, modeling and explaining how services and their data are adapted.
Algorithm 2 can be also used to validate pre-defined links or complete existing ones.
More generally effective concept join can be used in any data-based application e.g., as
a way to retrieve instances of Z from a large set of data Y given some constraints X
ie.,Y » Z.



5 Experimental Results

In more details we analyze our approach (Algorithm 2 and its extension for data flow
simulation) by comparing its performance against existing approaches [5-7] along two
dimensions: (i) CPU time (in ms) to generate composition and (ii) completeness of
data flow. The second dimension is evaluated by computing the rate: data descriptions
connections retrieved against those expected in the optimal composition. This compo-
sition, which is manually constructed based on services descriptions and their goal, has
no open links (i.e., links reaching to a non executable process) and no redundant links.
The experiments have been conducted on Intel(R) Core (TM)2 CPU, 2.4GHz, 2GB
RAM.
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Fig. 5. Computation Time of Composition Approaches.

e Context: Compositions with up to 50 services have been extracted from [30]
and enriched using a commercial ££7 ontology (1100 concepts, 390 properties: 384
concepts subsume the 716 remaining ones with a maximal depth of 8). The semantic
annotations are important for deriving data flow in our approach. SOUR? is used for
services annotations. The annotation process is costly e.g., 8 person/hours for 50 ser-
vices (with an average of 5 inputs/outputs) with the latter ontology, but has a positive
impact on automation of compositions. For scalability purpose we guided the semantic
link detection since each composition is bound by n x 2™ potential semantic links, with
n be the number of services. In more details we limited the number of Out (input of
Algorithm 2) to be computed beforehand e.g., by ranking Out with respect to In (e.g.,
size of their contraction/abduction) and considering only Out which ensures to obtain
the top k contraction/abduction. The semantic link detection was required only by our
approach, mainly to (i) identify potential data flow in composition and (ii) avoid the
computation of an exponential number of join, which strongly reduce the overall com-

3 http://www.soadall.eu/tools.html



putation time. The data flow requirements are formalized for [7] while only composition
goals are defined for [5, 6].

o Results - Computation Time: Fig.5 illustrates the computation costs for con-
structing compositions with up to 50 services. Our approach is the most time consum-
ing although (i) a control flow-based compositions is pre-defined and (ii) conjunctions
of outputs are considered satisfiable. Other approaches, generating control flow-based
compositions, are faster. The best approach [5] generates compositions of 50 services
in 7.2 seconds.

o Results - Data Flow Completeness: Fig.6 sketches the comparison of our ap-
proach vs. existing approaches. The same number of compositions has been retrieved
in all cases. The only difference is related to its data flow description. On average our
approach automatically derives 83% of the final data flow structure (i.e., data filter,
merge operators) of a data flow-free composition. The 17% remaining connections, are
cyclic-based data flow operators e.g., loop, which is not supported by our current im-
plementation. On average no more than 55% of connections are retrieved with the state-
of-the-art approach [7]. The approach of [5] generates an average of 9% of connections.
As reported by their authors, this is more appropriate for independent services.
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Fig. 6. Data Flow Completeness.

e Lessons Learned: Even if state-of-the art approaches are appropriate for fast
elaboration of control-flow-based composition, they are not necessarily adequate for
(i) detecting connections between services and (ii) connecting their descriptions. The
automated construction of complex data flow in £ DL has a negative impact on
the computation costs but ensures a finer description of compositions, which are ready
for execution. The size and the structure of the ontology have a limited impact. The
main factors for the increase of computation cost are (i) the expressivity of the DL and
(i1) the number of DL conjuncts (and their complexity) used to describe services. The
reduction of its expressivity has a positive impact on scalability, but it also decreases the
completeness and quality of data flow. The scalability can be improved by considering



only subsumption-based comparisons of descriptions (line 6), removing computation
of abduction and contraction. In such a case the rate of data flow completeness is also
decreasing. By removing the abduction and contraction parts of Algorithm 2 (from line
9 to 14), our approach is more scalable than state-of-the-art approaches, but only 55%
of data flow description is retrieved. According to our experiments a best trade-off is
proposed in [7], while [, 6] fits perfectly independent services with a better scalability
for [5].

e Limitations: The computed potential connections are all used for defining the
data flow of the composition. However if multiple services provide similar output (re-
spectively input) descriptions, they are all equally considered. All their output (respec-
tively input) descriptions are aggregated and subject to a join with other services. This
case falls in a special case of “Data Merge” (Fig.4 b where X7 = X5, with X; and X,
outputs of two distinct services). Additional manual efforts are required if such cases
need to be avoided, which were not foreseen in our applications.

6 Related Work

6.1 Data Flow-based Semantic Service Composition

Fig.7 positions existing approaches in relation to 3 dimensions: control flow, data flow,
description expressivity. These dimensions aree used to structure the remainder of this
section.

Mash-up-based approaches [31, 13] and semantics-based methods [7, 32, 14], posi-
tioned in Front Cluster of Fig.7, achieve composition by linking services according to
different expressivity of static control flow and pre-defined data flow operators (with
explicit requirements). They are all limited by the expressivity of service descriptions.
Indeed the latter are constrained by RDF/S while the former support only basic XML-
based transformation. By embedding compositions with advanced control flow [7], the
data flow construction is reduced. [14] provide a more complete (pre-designed) panel of
data flow operators, such as Construct and Mix, which can be simulated by Definition
1, but support only RDF/S, focusing at instance level. Their applicability to expressive
semantics and the automated construction of data flow is then limited.

Al planning- [6,33] and DL-based approaches [15, 12], positioned in Back Cluster
of Fig.7) elaborate composition of services by reasoning on their descriptions. Despite
higher expressivity, only sequence-based data flow is inferred. The approaches of [15,
25,32] are even more restrictive as they consider (specialized) semantic links between
one output and input. More elaborated operators have been presented by [16] towards
this issue. Contrary to our approach, data flow is based on concrete values and not
their semantic descriptions, which is more flexible for handling misalignment data-
description e.g., the instance defined by (FhasConnection. ADSL512K BS) where
ADSL512K BS is a SlowNetwConnection partially respects the description Slow-
NetwConnection M Jto.U K. Indeed no instance of a provider is provided. We ad-
dress it by using non standard reasoning. Other approaches simulate sequence [33] and
conditional-based [6], e.g., through forward effects for the latter, limiting the expressiv-
ity of compositions.
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6.2 Existing Constructive DL Reasoning

While abduction [26] derives description which is missing in Out to be subsumed by
In, concept contraction [24] retracts specification G (for Give up) in Out to obtain a
concept K (for Keep) such that K1 n is satisfiable in 7. The latter extends abduction to
unsatisfiable conjunction of Out and I'n. Approximate subsumption has been presented
by [34]. Such types of reasoning construct concepts which are missing or over-specified
in Out to be respectively (1) subsumed by and (2) consistent with In. Concept join
constructs more general concepts from Out which are subsumed by In. In particular,
its effective solutions (under C ) refer to the most general description of Out which
is subsumed by In. Abduction and approximate subsumption extend Out while join
extracts a part of Out for the same objective i.e., being subsumed by In. If Out C In,
abduction, contraction and approximate subsumption do not construct any description
while concept join does. It explains the way they are joined.

Subsumption between DLs concepts Out and In can be explained by deriving its
formal proof (i.e., which descriptions in In subsume which descriptions in Out) in
[35]. Concept join does not provide any explanation of subsumption, but instead closer
descriptions J (in Out) of In given Out under C .

7 Conclusion

In this paper we studied data flow-oriented Web service composition. Our work has
been directed to meet the main challenges facing this problem i.e., how to effectively



infer data flow between services based on their DL ELT descriptions? Firstly we in-
troduced the constructive reasoning join in ££1T, aiming to provide a “constructive
evidence” of why services can be connected. Then we described how non trivial data
flow can be generated, checked and (potentially) repaired using concept join, all ensur-
ing flexible data flow construction. Thus, implications of control flow modification on
data flow can be investigated. The experimental results provide evidence in favor of our
approach regarding the completeness of data flow.

Future works will focus on modeling data flow operators at instance level [14] i.e.,
how do loops in control flow work together with data flow? We will also investigate
metrics for evaluating data flow precision.
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