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Abstract. QODI is an automatic ontology-based data integration system (OBDI).
QODI is distinguished in that the ontology mapping algorithm dynamically de-
termines a partial mapping specific to the reformulation of each query. The query
provides application context not available in the ontologies alone; thereby the
system is able to disambiguate mappings for different queries. The mapping al-
gorithm decomposes the query into a set of paths, and compares the set of paths
with a similar decomposition of a source ontology.

Using test sets from three real world applications, QODI achieves favorable re-
sults compared with AgreementMaker, a leading ontology matcher, and an ontology-
based implementation of the mapping methods detailed for Clio, the state-of-the-
art relational data integration and data exchange system.
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1 Introduction

Web-wide integration of structured data is being enabled by the emerging Semantic
Web protocols that specify uniform query interfaces to the databases included in the
deep web [10]. These developments were recently boosted by W3C ratification of stan-
dards for publishing relational database content as RDF!. The scope of the deep web
underscores the need for automating data integration. The Semantic Web technology
stack enables an ontology to serve as a federating data model. Heterogeneous dis-
tributed database systems that use an ontology as a federating data model are called
ontology-based data integration systems (OBDI).

This paper details the mapping algorithms of Query-driven Ontology-based Data
Integration (QODI). QODI is currently deployed as the mediator of a faceted search
system over RNA databases®. QODI considers two OWL ontologies: the target ontol-
ogy, which is the federating data model, and the source ontology. SPARQL queries are
issued over the target ontology by users, and translated to the queries over the source
ontology. Although QODI is designed to integrate RDF data, a primary motivation is
the integration of relational data. Several of our test cases comprise relational databases
virtualized as RDF, and SQL schemas translated to ontologies [13, 14].

! http://www.w3.0rg/2001/sw/wiki/RDB2RDF
2 http://ribs.csres.utexas.edu/ontoexplorer
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Fig. 1. Diagram of OBDI systems with traditional and the proposed ontology mapping.
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Fig. 2. Example ontologies and SPARQL query about the domain of course. Oval vertices repre-
sent classes, and rectangular vertices are datatypes. Edges represent object properties, or datatype

properties. The SPARQL query asks for the time of any course taught by “Einstein”.

In the typical organization of an OBDI system, ontology mapping is a separate and
prerequisite step of query reformulation (see Figure 1(a)). Ontology matchers may be
introduced to automatically determine corresponding entities [3, 6]. In this paper, an
entity refers to a class or a property. We tested AgreementMaker [5], one of the top
finishers in 2010 Ontology Alignment Evaluation Initiative (OAEI) [1]. The highest
accuracy of AgreementMaker on our test sets is less than 42%. Inspection of these
results revealed two dominant challenges: ambiguous mapping and missing mapping.
We create a small example to illustrate the challenges. Figure 2 shows a target ontology
T, a source ontology S, and a SPARQL query ¢ which asks for the time of any course
that is taught by Einstein.

The ambiguous mapping challenge: an entity in the target ontology has an am-
biguous mapping if it can be mapped to more than one entity in the source ontology, and
the correct choice is dependent on the application. In other words, there is not enough
information in the ontologies alone to determine a correct mapping. An example of am-
biguous mapping considers that name of class People in T' can be mapped to name of
either class Teacher or Student in S. There is no basis for preferring one mapping or
another. However, considering query g, clearly Teacher is preferred.

Some matchers would identify this example as a complex mapping such that name
of People maps to the union of both name of Teacher and Student, since both Teacher
and Student can be identified as subclasses of People. In isolation of an application,
the logic of the complex mapping is correct. But, if the example query is reformulated
using both alternatives, the translated query will return the time of any course that either
taught or taken by Einstein. The reformulation is incorrect. Thus, only after the query
is known, is it possible to disambiguate the mapping.

Ambiguous mappings occur often. In our real world test sets, two out of three do-
mains have ambiguity. In those, 10% to 30% of the query workload displays ambiguity.



The missing mapping challenge: some entities do not have any mapping, such
as the class Schedule and property hasSchedule in S. Matchers can find out that both
Course in T and S are mapped, and time and date are mapped. However, Schedule and
hasSchedule, which are in the middle of the path from Course to date, do not have
any mapping. Query ¢ cannot be reformulated for execution on S without including
Schedule and hasSchedule.

We formally define query-specific ontology mapping. For each input query, the sys-
tem determines a partial ontology mapping sufficient to reformulate the specific query.
In effect, a query becomes a third argument to the ontology mapping algorithm (see
Figure 1(b)). Note that using the query as context requires no extra input from users or
experts. In QODI, both the input query and the source ontology are decomposed into
paths, and mapping concerns identifying correspondences between paths instead of en-
tities. Path similarity is estimated based on the feature vectors that are generated by
representing each path as a bag of entity labels. Given an input query, QODI searches
for a subgraph of the source ontology, such that the set of path correspondences has the
highest confidence. QODI exploits efficient heuristic search algorithms, which guaran-
tee to find an optimal solution. By leveraging queries to provide context, the ambiguous
mapping challenge is resolved. Since the path similarity is not dependent on the precise
alignment of entities, the missing mapping challenge is resolved.

In our running example, the path that contains People and name in query q also con-
tains teacher. In ontology S, the path with Teacher has higher string vector similarity
than the one with Student. The two path correspondences for the query should be:

{Course,teacher,People,name,string} = {Course,offeredBy, Teacher,name,string }

{Course,time,date} = {Course,hasSchedule,Schedule,date,date }

QODI is evaluated on three real world application domains: Life Science, Bibliog-
raphy, and Conference Organization. QODI outperforms all baselines on all test cases.

2 Problem Definition

The following section begins with graph definitions and culminates with the formal
definition of the mapping problem.

2.1 Basic Graph Definition

An ontology graph is a representation of an ontology as a directed labeled graph, where
classes and datatypes are vertices, and properties are edges (see Figure 2). Target and
source ontologies are distinguished as 7" and .S, respectively. These notations are used
interchangeably to denote ontologies and ontology graphs. To simplify handling inher-
itance relationships, rather than coding the logic of inheritance into the path-related
algorithms, an ontology graph is expanded by replicating properties. If the domains or
ranges of a property have subclasses, new edges with the same label as that property are
created for each subclass.

Definition 1 (source and sink). In a directed labeled graph G, a source is a vertex
with 0 in-degree, and a sink is a vertex with 0 out-degree. The sets of all sources and
sinks of G are denoted SOU RC E¢ and SIN K¢, respectively.



Definition 2 (ss-path). A source-to-sink path or ss-path is a path from a vertex vy to a
vertex vq in a directed labeled graph G, where v is a source and vq is a sink of G.

For convenience, we represent a path p as an ordered list of vertices and edges, and
define the length, denoted as |p|, as the sum of the number of vertices and edges in p.

Definition 3 (ss-path-set). The set of all possible ss-paths from source vy to sink vy in
a directed labeled graph G is called an ss-path-set (denoted as SS-PATH-SET G 4, v, )-

Definition 4 (graph-ss-path-set). Given a directed labeled graph G, the set of all ss-
paths (denoted as GRAPH-SS-PATH-SET ) is the union of all ss-path-sets from all
sources to all sinks in G.

Definition 5 (query graph). Given a SPARQL query q over ontology T, a query graph
(denoted as Q) is a subgraph of T that corresponds to q.

The query graph of the SPARQL query in Figure 2(c) is shown in Figure 2(d).

2.2 Assumptions

Basic assumptions are as follows:

1. All object properties and datatype properties have domains and ranges. This as-
sumption simplifies the construction of ontology graphs. High quality manually de-
signed ontologies will detail domains and ranges. Ontologies automatically translated
from relational schemas include domains and ranges [13, 14].

2. We consider conjunctive SPARQL queries in the SELECT query form, and ex-
clude variables from the predicates of triple patterns. For each variable, the class, which
is the type that the variable is binding to, either can be inferred from the domains or
ranges of predicates or is provided by rdf:type. Given these assumptions, there exists
only one query graph for each query. If multiple query graphs are allowed, each of them
can be mapped separately. For simplicity, we leave the relaxing of these assumptions
for future work.

3. The sinks of a query graph only represent datatypes. This paper concerns ontolo-
gies that describe database content and queries that retrieve information from databases.
Retrieving database data ultimately requires the rewriting of datatype properties.

2.3 Query-Specific Ontology Mapping

The following definitions define query-specific ontology mapping, which is the core
problem of this paper. An ss-path correspondence records the mapping confidence be-
tween two ss-paths.

Definition 6 (ss-path correspondence). Given two directed labeled graphs G and
G, an ss-path correspondence between two ss-paths p and p' (denoted by m, ) is
< p,p’,aﬂp’p, >, such that p € GRAPH-SS-PATH-SETg, p' € GRAPH-SS-PATH-
SET¢q:, and Qr, is a confidence measure between 0 and 1.



A match candidate is a set of ss-path correspondences between the ss-paths in the
query graph, and the ss-paths in a subgraph of the source ontology graph.

Definition 7 (match candidate). Given a query graph Q, a match candidate 2 ¢ is a
set of ss-path correspondences between the ss-paths in () and the ss-paths in a graph G,
which is a subgraph of the source ontology S, if the following conditions are satisfied.:

— The sinks of G are datatypes;

— for each ss-path p € GRAPH-SS-PATH-SETq, there exists exactly one ss-path cor-
respondence Ty, .y € £2q ¢, where p' € GRAPH-SS-PATH-SET;

— for each ss-path p' € GRAPH-SS-PATH-SET¢, there exists ss-path correspon-
dences mp, v € £2g,c, where p € GRAPH-SS-PATH-SET;

— for each pair of ss-paths p1,p2 € GRAPH-SS-PATH-SET ), if they share a common
source, then the two corresponding ss-paths p', py € GRAPH-SS-PATH-SET ¢ also
share a common source, where ,, . € ¢ G, Tp, 1, € £2q.G-

Definition 7 contains several constraints. First, all sinks of G are required to be
datatypes, because the sinks of the query graph () are also datatypes. Second, we are
interested in a one-to-one mapping, which restricts each ss-path in @) to be contained
in exactly one correspondence. Third, if the ss-paths in () share a source, the mapped
ss-paths in G' also share a source. We assign a confidence measure Bq, ., which is
defined as the product of all ss-path correspondence confidence measures:

BQQ,G = H aﬂ'p:p/

T € 20,6

The task of query-specific ontology mapping, g-mapping, is to find the match can-
didate with the highest confidence.

Definition 8 (q-mapping). Given two ontology graphs T, S, and a SPARQL query q
over T, the query-specific ontology mapping (denoted as q-mapping(T,S,q)) is the set
of ss-path correspondences {2 a, where Q) is the query graph, and G is a subgraph of
S, such that 2, ¢ is a match candidate, and BQQG = maxgcs Bag .6

3 QODI: Mapping and Reformulation

The goals of mapping include defining a similarity score between two ss-paths, and
determining the highest scoring ss-path correspondences without an exhaustive search.

3.1 ss-path Similarity Measure

The ss-path similarity measure must be able to disambiguate uncertain mappings. Given
a pair of ss-paths, the similarity is defined as a product of four factors: similarity be-
tween source classes, similarity between datatype properties, similarity between path
labels, and a penalty for path length differences. The source class and datatype property
determine the two ends of an ss-path. A path label, containing the labels of all entities
except datatypes in an ss-path, is used to disambiguate uncertain mappings.



Similarity estimation of source classes and datatype properties has been well stud-
ied in prior work [5, 12, 6]. Any existing method may be used for this component. In
the experiments, we evaluated both simple string distance and sophisticated ontology
matchers. The similarity between all classes and datatype properties can be computed
beforehand and stored as similarity matrices for lookup.

We borrow techniques from information retrieval to measure the similarity between
path labels. For an ss-path, we process the labels of all entities except datatypes in the
path using linguistic processing, and add the processed strings to a list. The linguis-
tic processing includes tokenization by punctuation, numbers, and uppercase letters (if
the letter is not preceded by an uppercase letter); stop words removal; and stemming
(using SimPack?). All strings are converted to lowercase. A feature vector is generated
by indexing the list of strings, and using frequencies as features. Given that different
labels may contain a different number of tokens, the frequency of a token is set to one
over the number of tokens in a label. The path label similarity, S, is computed as the
intersection between the two feature vectors.

- S min(f(p). £:(0'))
Su:p) = s T R — min(E (). £.(7)

where f;(p) is the ith element of the feature vector of ss-path p, and m is the dimension
of the feature vectors.

If two paths are similar, their lengths may not have a large difference. We use an
exponential function to penalize the path length difference. The ss-path similarity mea-
sure, Sgg, is defined as,

Sss(p,p') = Sc(p,p')™ - Sp(p,p') - Sp(p,p’) - e~ [ 1PI=IPT] (2)

where Sc and Sp are similarity measures for source classes and datatype properties,
which are provided by matchers. |p| is the length of path p, and 7 is a non-negative real
number. n,, is the number of ss-paths in the query graph that share the same source with
p. ny, is introduced because the same similarity between sources will be multiplied n,,
times when measuring the confidence of a match candidate.

ey

3.2 g-mapping

We denote the set of all possible match candidates of query graph @ as M. G, which
is the subgraph of S involved in the match candidate with the highest similarity, is
determined by maximizing the confidence measure. q-mapping(7’,5,q) is the set of ss-
path correspondences (2, ; between @ and G.

G = argmax fo,
Nq,cEMq

= argges { H {c'esgl(%(CEG
c€SOURCEq

/
H { P/GSS—PAI%-%)S(ETG‘C, . Sss(p,p )}}}} 3)
pESS-PATH-SETq ¢, « e,

3 files.ifi.uzh.ch/ddis/oldweb/ddis/research/simpack/



where /3 20.c is the confidence measure of the match candidate, and SS-PATH-SET¢ . «
represents the set of all ss-paths with source ¢ in G.

Equation (3) specifies the mapping as: for each source vertex in the query graph,
find a vertex in the source ontology as a source vertex, such that the product of all
ss-path similarities is the maximum.

3.3 Solving the Maximization

Equation (3) does not specify how to solve the maximization. A naive algorithm may
score all possible match candidates. However, the number of all possible paths can be
exponential in the number of vertices for acyclic ontology graphs, and is infinite for
cyclic ontology graphs. It is infeasible to compute similarity between all pairs of paths.
Thus, we employ heuristic search algorithms to reduce the computation.

We decompose the search problem into two phases: 1) given an ss-path in the query
graph and a vertex in S, search for the ss-path in .S with the given vertex as source that
has the highest similarity; 2) given a set of ss-paths that share a source in the query
graph, find a set of paths in .S that share a source and have the highest product of
similarities. Phase 1) is a subproblem of 2). Thus, we solve 1) then 2).

Phase 1) can be solved by a heuristic search algorithm similar to A* search. A* is
commonly applied to find a minimal cost path in a graph [9]. A* requires a function
that computes the cost of a partial path, and a heuristic cost function that estimates the
cost of completing a path. The search is guaranteed to terminate with an optimal path
if the heuristic is admissible. We cannot exploit the traditional structure of A* search.
Our definition of path similarity considers all labels in a path as a bag of words. Thus,
we can not decompose a partially computed answer into the sum of two functions.
We define a single function that, given a partial path, will never overestimate the cost
of a complete optimal path. With similar proof as A* search, our heuristic search is
guaranteed to find an optimal path. The implementation of the search algorithm remains
largely unchanged. Search states, representing partial paths, are saved in an open-list P.
P is initialized by the path that only contains one vertex (the given vertex). The paths
in P are sorted in ascending order using our heuristic function. The search terminates
when a path p containing a sink (datatype) is pulled from P.

We introduce two techniques to help create the heuristic cost function. First, the
similarity between datatype properties (Sp), which is a factor of Sgg, is considered
at the beginning of the search. A datatype property is the last edge in an ss-path, and
connects to a datatype. Thus, a large amount of computation can be potentially wasted
by the search before discovering the similarity between datatype properties is low. To
address this, P is initialized by a set of paths, each of which only contains the given
vertex and only leads to the sink through a specific datatype property. Following that,
Sp is a constant for each path. S¢ is also a constant, since the source vertex is given.
Only the cost of adding new vertices and edges to the path needs to be considered.

The second technique is a preprocessing step that associates reachable label sets
and shortest path lengths to each class. We define a reachable label set from a vertex
through a datatype property as the union of the path labels of all possible paths from
the vertex to a datatype through the datatype property. Each vertex of S is associated



Fig. 3. An example ontology graph with reachable label sets. The dashed boxes around each non-
sink vertex contain the reachable label sets through the two datatype properties c1 and d1. For
example, the reachable label set from C' through c1 is {C, c1}, and through d1 is empty.

with the reachable label sets, from itself through each datatype property. Figure 3 il-
lustrates an example of reachable label sets. The reachable label sets are computed by
recursively propagating the reachable label sets of each vertex to its parents. The al-
gorithm terminates when the reachable label sets are not changed for all vertices. The
worst case complexity of this algorithm is quadratic in the number of vertices. Given
that a reachable label set is a superset of the labels that may appear in an optimal path, a
heuristic can be defined to guarantee the optimality. In addition, each vertex of S is also
associated with the lengths of the shortest paths from itself to datatypes through each
datatype property. The lengths of shortest paths are also used in the heuristic. Note that
the preprocessing only need run once.

We denote the ss-path in the query graph as r, the path in S that needs heuristic
scoring as p, the last element of p as x, and the objective datatype as e. The reachable
label set from z to e is denoted as L, ., and the length of the shortest path from x to e
is denoted as I, .. The heuristic cost function A is defined as follows:

Z?Ll Hlln(fz (T)a fz (p) + E(Tvpa L-’c,e)) e g(r,plz,e)
2isq fi(r) + £i(p) — min(fi(r), fi(p)) @

where n,. is the number of paths in the query graph that share the same source as r, and
f;(p) is the ith element of the feature vector of path p. f;(r, p, L, ) and g(r, p, ;) are:

h(p) = — Sc(r,p) ™ -Sp(r, p)-

5 [ max(f;(r) — £;(p), 0) ,ifz # eand stringi € L,
f1<7",p, Lat,c) - {O , otherwise (5)
_ Jmax(|p| +lge—1—1r|, 0),ifz #e
g(r7pal$,€) - {' ‘p| _ |/,1‘ ‘ ,ifx:e (6)

Comparing (4) with (2), h is derived from the negation of Sgg by substituting a real
path by an estimation. Let us denote the path as p, when the search terminates. Based on
the termination condition, x = e. Substituting = with e, h(p) = —Sgs(r, ). The fol-
lowing lemma and theorem prove that p is the best scoring path. Lemma 1 corresponds
to the proof of admissibility of the heuristic in A* search.

Lemma 1. Suppose the search has not terminated. For any optimal path p, there exists
a path p in the priority queue P, which can be expanded to p, such that h(p) < h(p).



Proof. h is the negation of a product of four non-negative factors. We will prove that
each factor of h(p) is greater than or equal to the corresponding factor of h(p). Then
h(p) < h(p).

The first two factors, S¢ and Sp, are the same for both p and p.

Consider the third factor. Denote the last element in path p as x. The reachable label
set, L, ., contains the labels of all possible paths from x to e, including those in p. Per
the definition of f;, the numerator in h(p) is greater than or equal to that in i(5). Since
p is a sub-path of p, the denominator in h(p) is less than or equal to that in h(p). Thus
the third factor of h(p) is greater than or equal to the third factor of h(p).

Consider the fourth factor. [, . is the length of the shortest path from z to e, so
|p| + Iz, — 1 < |p|. Consider two cases:

1. |p|+lye—1 > |r|. Then g(r,p,ly.c) = |p|+ls,e—1—|r|, and g(r, p,lc.) = |B|—|r].
Thus, Q(Tapv lw,e) < g(raﬁ7 le,e)~

2. |p|+lz.e—1 < |r|. Then g(r,p,ls.) = 0,and g(r, P, lc.) > 0. Thus, g(r,p, 1) <
g(r, D, le.c).

Thus the fourth factor of i(p) is greater than or equal to the fourth factor of h(p).
Theorem 1. When the search terminates, the path p is an optimal path.

The proof of Theorem 1 can be derived from the proof of the similar theorem for
A* search by substituting the sum of the two cost functions with our heuristic h(p) [9].

If there is no path from the given vertex through any datatype property, there is no
solution for the search. The search algorithm terminates by knowing the reachable label
sets of the vertex are all empty. Otherwise, the algorithm will find an optimal path with
finite length, because h of a path with infinite length is infinitesimal due to the path
length penalty. Most real world queries do not have cycles, so we prune cyclic paths
during the search to further reduce the computation. This heuristic can be disabled for
the applications with cyclic queries.

Phase 2) involves selecting a vertex as a source, and jointly finding multiple op-
timal paths that share a source. For each possible source class, we exploit the heuris-
tic proposed in phase 1) to estimate the product of the highest path similarities of all
paths as the score for the class. The algorithm in phase 1) runs using each class as the
given source in descending order of the estimated score. If the real score of a class is
greater than or equal to the estimated score of the remaining classes, those classes can
be pruned. This algorithm also terminates with an optimal solution. The proof is similar
to the proof of Theorem 1.

If the query graph has multiple sources, the algorithm in phase 2) runs for each
source separately.

3.4 Query Reformulation

The primary focus of this paper is mapping. Thus, we only briefly explain the benefits
of using g-mapping for query reformulation. A central challenge in query reformulation
is missing mapping. In QODI, this challenge manifests as a mapping between a path



in the query graph and a path in the source ontology graph. The determination of an
ss-path correspondence anticipates that the paths may be of different lengths.

Given ss-path correspondences as mapping, the reformulation algorithm is simpli-
fied as traversing the mapped ss-paths, and generating a triple pattern for each graph
edge. The URI of each edge in the ss-path is translated as the predicate of a triple. The
subject and object of the triple are variables or literals assigned to the domain and range
of the edge, respectively. Assigning variables to classes that are shared by multiple paths
is an open research topic. We do not elaborate on this topic. For the query in Figure 2,
a path correspondence and the resulting translated triple patterns are:

{Course,teacher,People,name,string} = {Course,offeredBy, Teacher,name,string }
?c1 course:offeredBy 7c2 . ?c2 teacher:name “Einstein” .

4 Experimental Setup

4.1 Test Sets

The test sets comprise three application domains: Life Science, Bibliography, and Con-
ference Organization. The test cases include an ontology created by an international
standards body, two ontologies created from direct mapping relational databases, and
three ontologies used in OAEI [1].

The Life Science domain consists of Darwin Core and Specify. Darwin Core is an
ontology at the center of the standardization efforts of the Global Biodiversity Informa-
tion Foundation (GBIF), an organization concerned with cataloging the impacts of cli-
mate change. Darwin Core contains 18 classes, and 71 properties. The Specify ontology
was created from direct mapping the SQL schema of the database in the Specify biolog-
ical collections software package*. Specify is used to manage over 200 field specimen
collections. The specify ontology has 11 classes, and 413 properties. The Bibliogra-
phy domain comprises the UMBC ontology from OAEI, and an ontology that models
DBLP, generated from the direct mapping of a relational database of DBLP metadata
through Ultrawrap [14]. Class hierarchies are manually added. DBLP ontology has 17
classes, and 51 properties. The Conference domain consists of the two ontologies from
OAEL SIGKDD and SOFSEM. We have made the test suite available on our website’.

Sets of test queries are also required, and were created as follows. First, groundtruth
mappings were manually generated, containing all correct ss-path mappings between
each pair of ontologies. Subsequently, a computer program systematically generated
two kinds of SPARQL queries for each ontology. 1) A PathOnly query has a query
graph consisting of only one ss-path in the groundtruth. 2) A ClassAll query has a query
graph consisting of all ss-paths (at least two) that share a source in the groundtruth. A
ClassAll query is the most complicated query with one conjunction over the source.
In English specification, a PathOnly query asks for all values of a single attribute of
a concept, and a ClassAll query asks for all values of all attributes of a concept. For
ontology 7' in Figure 2, a PathOnly query could ask for names of all students taking

* http://specifysoftware.org/
> http://ribs.csres.utexas.edu/qodi



BASE <http://ribs.csres.utexas.edu/specify/>
Select 2v0 2v1 2v2 7v3 7v4 V5 26

..... inati i 0. 70 <determination#Qualifier> 7v1.

BASE <http://ribs.csres.utexas.edu/specify/> ?¢0 <determination#Remarks> ?v2. ?2¢0 <determinationt#ref-TaxonID> ?c1.

Select ?v 7c1 <taxon#Name> 7v3 2c0 <determination#ref-PreferredTaxonID> ?c2.
7c2 <taxon#Name> 7v4. 20 <determination#ref-CreatedByAgentID> 7c3

Where { ) ) 23 <agent#DateOfBirth> 7v5 2¢0 <determination#ref-ModifiedByAgentID> 7c4.
2c0 <locality#Latitude1> ?v. ?c4 <agent#DateOfBirth> 2v6. 2c0 rdf:type <determination>.

?c0 rdfitype <locality>. 7c1 rdfitype <taxon>. 2c2 rdfitype <taxon>.

) 7c3 rdf:type <agent> 7c4 rdf:type <agent>.

}
(a) PathOnly query, asking for (b) ClassAll query, asking for the dates, remarks, and quali-
the latitude of all locations. fiers of all determination of taxons, as well as the birthdays
of the agents that determine the taxons.

Fig. 4. Real SPARQL queries generated for Specify ontology in the experiments.

courses, and a ClassAll query could ask for titles, time, and names of all students of all
courses. Figure 4 shows examples of real PathOnly and ClassAll queries generated for
the Specify ontology, as well as the meaning of both queries.

4.2 Baselines

We compare QODI against two kinds of baselines: ontology matching systems, and an
ontology-based implementation of an existing relational data integration system.

For ontology matching baselines, a matcher computes the similarity between classes,
object properties, and datatype properties. Given a query, each entity is translated to an
entity in .S with the highest similarity.

Clio is a relational data integration and exchange system that is closely related to
QODI [7]. Clio generates mappings between attributes, and finds associations between
those mappings through foreign key constraints. We implement baselines with similar
ideas as Clio. A matcher first generates mappings between datatype properties by pick-
ing the ones with the highest similarity. Given a query, the baselines find the match
candidates that contain all the mapped datatype properties. Clio asks a user to pick one
match candidate, which is not allowed in our automated setting. We approximate this
process by first picking the match candidates with highest similarity between source
classes, and then picking the one with the least summation of path lengths.

We use three matchers for all methods. One matcher is substring string similar-
ity that measures the portion of the longest common substrings between entity labels.
The second matcher is SMOA string similarity between entity labels [15]. The third is
AgreementMaker configured as detailed in OAEI 2010 conference track [5].

4.3 Metrics

The assessments are reminiscent of recall and precision used in ontology matching and
information retrieval. valid_rate is the metric similar to recall, which is the proportion
of queries with complete g-mappings generated, independent of correctness. We use #
to represent the number of.

Definition 9 (complete q-mapping). A g-mapping with a set of correspondences {2,
is complete, if for every ss-path in the query graph (), there exists a correspondence to
an ss-path in G with non-zero confidence measure.



# queries with complete g-mappings generated

valid_rate =
# queries

(N

For measuring the precision of mapping systems, we consider the case that a query
is correctly mapped, and also the case that a query is partially correctly mapped.

# correctly mapped queries
# queries
> o bercentage of correctly mapped ss-paths in g

query_precision =

®)

path_precision =

# queries ©)

A measure of ambiguity can facilitate the analysis of experimental results. An accu-

rate measure of ambiguity is difficult, since it has to anticipate all possible application

scenarios. We define an approximate measure of ambiguity, which only considers map-

ping between datatype properties as the source of ambiguity, and considers two datatype
properties as mapped if a matcher assigns them the highest similarity.

Definition 10 (datatype ambiguous q-mapping). Given a datatype property similar-
ity measure Sp, a target ontology T, a source ontology S, a query q over T, and the set
of ss-path correspondences (2 of g-mapping(T,S,q), the mapping is datatype ambigu-
ous if for at least one ss-path correspondence Ty, ,,. € 2, Sp(pi, ps) = max, Sp(pi,p),
and there exists a datatype property d & ps, such that the similarity between d and the
datatype property of p; equals Sp(pt, ps)-

ambiguous_rate is a measure of the proportion of queries that have datatype am-
biguous q-mappings.

# queries with datatype ambiguous gq-mapping
# queries

ambiguous_rate = (10)

5 Experimental Results

Given a pair of ontologies, O; and O-, the experiments are conducted on two directions
of mappings: using O, as target and using O as target. The results for the two mapping
directions are shown separately for ambiguous _rate to distinguish the differences. For
other metrics, the results are averaged. We set = 0.3 based on the tuning on the
Bibliography test set with PathOnly queries using Substring as matcher. Section 5.3
discusses the accuracy using different 7. Due to the space limit, only part of the results
are reporting. Please refer to the technical report for all results [16].

5.1 Valid_rate

Figure 5 shows the valid_rate for Bibliography test set. Conference and Life Science
test sets have similar numbers, and not reported here. The three methods of QODI
achieve 100% valid_rate for all test sets. This is because QODI does not determine any
entity mapping beforehand. Each path correspondence is assigned a confidence, and the
mapped paths has the highest confidence.
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Fig. 5. valid_rate for Bibliography test set. Higher number means better performance.
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Fig. 6. query_precision for different test sets. Refer to Figure 5(c) for legend.

The Clio baselines are able to generate complete mappings for the PathOnly query
set but not all ClassAll queries. For some ClassAll queries, Clio cannot find a complete
g-mapping if the mapped entities are incorrectly selected from ambiguous mappings.
The comparison between QODI and Clio shows that disambiguation is important even
for generating complete q-mappings regardless of correctness.

The ontology matching baselines are able to generate complete q-mappings for less
than 50% of PathOnly queries, but barely generate complete g-mappings for ClassAll
queries. The big gap between ontology matching baselines and Clio baselines demon-
strates the importance of the missing mapping challenge.

5.2 Precision

Figure 6 and 7 show the precisions of all methods. For all test sets, at least one QODI
method dominates all baselines in terms of both precision measures. For ClassAll query
sets, there are big gaps between QODI and all baselines. QODI is the only system that
achieves non-zero query_precision for the Life Science test set with ClassAll query set.
For ClassAll query set, each query has more than one path that shares a source. On one
hand, more paths may lead to poor mapping results since each path may be mapped
incorrectly. On the other hand the context from different paths may be used by QODI
to map the correct source class shared by the paths. The precision results indicate the
importance of resolving the ambiguous mapping challenge.
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Fig. 7. path_precision with ClassAll query sets for different test sets. Refer to Figure 5(c) for
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Fig. 8. query_precision of Bibliography test set when using different 7 (horizontal axis).

Comparing Clio with ontology matching baselines, for all test sets and all measures,
at least one Clio baseline dominates or performs as well as ontology matching baselines.

5.3 Parameter Tuning

Figure 8 shows the query_precision of Bibliography test set using different path length
penalty parameter 7. The results for Conference and Life Science sets are not reported
due to space limit. With the same length difference, a large 7 gives big penalty. As a
special case, 7 = 0 does not have any penalty on the path length.

For most cases, the penalty improves query _precision comparing to the case of n =
0. However, if 7 is too large, the query_precision can be decreased. With large 7, the
penalty of length dominates the similarities of source classes, datatype properties, and
path labels in (2). Thus only the paths with the same lengths are considered as similar,
ignoring the labels of the paths.

5.4 Ambiguity

As the primary motivation is the identification that mapping correctness may be query
dependent (ambiguous), we assess how much of QODIs improved performance over
Clio is explained by the presence of ambiguity and the respective systems ability to
resolve it. In this section, we measure the ambiguous_rate of all test sets, and compute
the query_precision of all methods over PathOnly queries with ambiguous mappings to
measure the capability of disambiguation. If there is no ambiguity, the precision column
is empty as shown in Table 1.



Lt [LL | Bt | BL|CT[CJ
ambiguous_rate| 0.194 [0.000] 0.177 [0.000{0.000/0.000

SMOA 0.143| - 0364 - - -
Clio.SMOA |0.429| - |0.364| - - -
QODI_SMOA |0.714| - |0.636| - - -

Table 1. The ambiguous_rate (row 2) and query_precision of queries with datatype ambiguous
g-mapping (row 3, 4, 5) using SMOA as matcher. L1 uses Darwin Core and L uses Specify as
the target ontology for the Life Science test set. Bf uses UMBC and B uses DBLP as the target
ontology for the Bibliography test set. C1 uses SIGKDD and CJ uses SOFSEM as the target
ontology for the Conference test set. If ambiguous_rate is zero, there is no query_precision for the
queries with datatype ambiguous q-mapping. Higher query_precision means better performance.

Two out of three test sets, Life Science and Bibliography, have non-zero ambigu-
ous_rate. The ambiguous_rate measured with different matchers share similarities. All
three matchers assert that Life Science with Darwin Core as target ontology has ambi-
guity, with rates from 0.139 to 0.333. Substring and SMOA agree on the ambiguity of
Bibliography with UMBC as target ontology, with rates 0.242 and 0.177. We only report
the query_precision using SMOA as matcher in Table 1. Other matchers show similar
results. For both L1 and B, QODI achieves the highest query_precision on the queries
with datatype ambiguous q-mappings. Comparing with Clio, the relative improvement
of QODI is 66% and 75%. This shows that QODI is capable of disambiguation.

6 Related Work

Ontology matching has been well studied [2, 6, 3, 8]. Many ontology matching systems
compete in the OAEI [1], such as AgreementMaker [5] and RiMOM [12]. In the ontol-
ogy matching world, most of systems focus on mapping between entities. In this paper,
we define query-specific mapping for OBDI systems.

Clio, the state-of-the-art semi-automatic data integration and exchange system has
close similarities with QODI [7]. Schema mapping in Clio is done in 2-steps: find-
ing initial mappings between attributes; and associating mappings by logical inference
through referential constraints. A semi-automatic OBDI system, Karma, is recently
built to map structured data sources to ontologies [11]. For both Clio and Karma, the
mapping is generated based on schemas alone. Neither system uses context from queries
for resolving ambiguous mappings. Ontology based data access (OBDA) uses ontolo-
gies expressed in Description Logic as a conceptual view over data sources [4]. The
mapping generated by QODI may be used for OBDA with proper representation.

7 Conclusions and Future Work

In this paper, we introduce query-specific ontology mapping, and implement an OBDI
system, QODI. Departing from existing ontology matchers, QODI generates path cor-
respondences, instead of entity correspondences, to facilitate query reformulation. The



correspondences are discovered by heuristic search algorithm. A query is used as an in-
put to the mapping to provide context for disambiguation and also reduce the mapping
complexity.

Future work consists of at least three possible directions. First, the fundamental or-
ganization of QODI admits integration of user interaction for refinement. Second, path
mappings can be accumulated over time as in pay-as-you-go systems. Third, new simi-
larity measures and the relaxing of the basic assumptions can be explored.
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