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Abstract. This paper argues that the common practice of benchmark-
ing is inadequate as a scientific evaluation methodology. It further at-
tempts to introduce the empirical tradition of the physical sciences by
using techniques from Statistical Design of Experiments applied to the
example of SPARQL endpoint performance evaluation. It does so by
studying full as well as fractional factorial experiments designed to eval-
uate an assertion that some change introduced in a system has improved
performance. This paper does not present a finished experimental design,
rather its main focus is didactical, to shift the focus of the community
away from benchmarking towards higher scientific rigor.

1 Introduction

The practice of benchmarking is widespread, both in industry to select the most
appropriate implementation among several choices, and in academia as means to
verify or refute an assertion on the performance of a certain practice or system.
While we could contribute to the industrial cases, our focus is on the latter. A
benchmark typically consists of several microbenchmarks, which are procedures
for placing loads on the system to measure its performance as a function of
the load. For SPARQL benchmarks, usually the performance is measured as the
number of queries the SPARQL implementation is able to answer in a certain
time (the throughput) or the time required for it to respond to a query.

However, there are many problems with this approach when used to evaluate
assertions about the overall performance of a system or several systems:

– As the complexity increases, the number of parameters that one may wish
to test increases dramatically.

– Nothing compels anyone to find microbenchmarks that can refute an asser-
tion, and there is no structured approach to investigate whether a benchmark
is flawed.

– There is no meaningful summary of the performance as a whole, so that an
assertion about performance cannot be refuted as an optimization may have
detrimental side effects that cannot be identified, or cannot be compared to
possibly positive effects in a different microbenchmark.



To address some of these problems, one may try to standardize benchmarks,
to eliminate some parameters and identify others as believed to be important.
Also, social pressure should then prompt developers to use a standard benchmark
so that assertions may be refuted.

While this is an improvement which is possibly sufficient for industrial uses,
it is still flawed as empirical research, as it cannot capture the full diversity of
the problem: For example, if a vendor claims that their implementation is better
if used on a highly capable hardware platform, then the standardization of a
hardware platform cannot test this assertion. Moreover, to test this assertion,
one would need a summary technique that can identify the interaction between
implementation and hardware platform and possibly other parameters.

One important aspect of science is the structured approach to falsifying hy-
potheses, and therefore is important that assertions about performance are for-
mulated as hypotheses that can be falsified.

Therefore, attacking the complexity problem by eliminating parameters we
think influence the outcome (e.g. caching) for simplicity is untenable as scientific
practice. We must instead tackle this problem by enhancing our capability of
testing complex systems and to identify situations where our assumptions are
flawed. Such constraints can only be made when we are highly confident that a
certain parameter does not have any influence.

In this paper, we employ techniques from the well-established field in statis-
tics known as Design of Experiments (DoE) to point out a direction that promises
to address these problems. First, we design a simple 8-parameter experiment, and
then we detail an experiment that can meaningfully provide a summary of the
statistics.

Then, we demonstrate how the number of runs required in the experiment
can be reduced while maintaining a structured approach to the problem, and
we discuss the trade-offs involved. We then continue to discuss techniques that
show our simplistic experiment to be flawed, yet scientifically better than the
practice of benchmarking. Finally, we outline a road-map to establish the use of
these techniques in SPARQL endpoint evaluations both as a practical tool and
as a scientifically more rigorous methodology.

1.1 Key concepts of Design of Experiments

We expect DoE to be new to most readers, but some familiarity with hypothesis
testing is assumed.

In the experiments DoE is concerned with, a response variable is measured
under a various combinations of parameters. These parameters are known as
factors. For each factor, a range of possible values is fixed. These values are known
as levels for this factor. Levels are not constrained to be continuous variables,
they can be discrete, or even two different instances of a class. Experiments are
run by choosing a combination of levels for the factors.

For example, one may measure the execution time of a SPARQL endpoint by
measuring it when it contains 1 or 2 million triples. Then, the execution time is
the response variable, the factor is the number of triples and it has two levels, 1



or 2 million triples. We have chosen in this paper to only deal with the relatively
straightforward aspects of the DoE formalism, and therefore constrained the
experiment strictly to two levels.

In an experiment, there are several factors, and one may run the experiment
by measuring the response variable for every combination of levels. In a two-level
experiment, this will result in 2n runs, where n is the number of factors. This is
called a full factorial experiment. This is done in Section 3.2.

In many fields of science, experimental economy is extremely important, and
so, DoE offers extensive methodology to run a certain fraction of the runs at
the price of explanatory power. Such experiments are called fractional factorial
experiments and are covered in Section 3.3.

We describe the influence of the choice of levels on the response in terms of
effects. For a factor A with two levels, we let a1 and a2 be the average response
of all 2n−1 measurements with A at level 1, and 2, respectively. The main effect
of A is then defined as a2 − a1.

Similarly, interaction effects for two factors AB are defined by comparing
averages for equal versus non-equal levels of A and B. Details of this theory, and
how to compute the effects in practice, using linear regression, are found in [?].

The next step is to understand which factors are important or significant.
One approach is to plot the sorted effects against the normal distribution. To
understand why, note that if there is nothing of interest, the measurements have
a certain normal distribution purely due to noise. When plotted against a normal
distribution, the plot would be a straight line. If there are any deviations from
the straight line, it implies that they may be significant. Such plots can be found
in Figs. 1 to 4. The range in the y-axis is dictated by the number of runs.

2 Related work

A literature survey has not revealed any direct prior art, neither in the Semantic
Web field nor more generally in database research. However, the general approach
has been well established, not only in statistics. A relatively well cited textbook
is [?] but we have not found the parts discussed in the present paper to be
widely adopted. Recently, a comprehensive text on experimental methods has
been published in [?] demonstrating the broad applicability of the methodology
we employ. We have chosen SPARQL Endpoint evaluation as an example in this
study since SPARQL Federation is our main interest, and to turn to statistical
standard texts [?] for this study.

Some problematic sides of benchmarking have been noted in several papers,
notably [?] and [?]. We also acknowledge that great progress has been made to
improve benchmarks, in particular, we are indebted to [?].

We believe that automatic creation of benchmark queries, as pioneered by [?]
is a critical ingredient for the application of DoE to be successful as a method-
ology.



Finally, we acknowledge the efforts of the Linked Data Benchmark Coun-
cil and the SEALS project. However, they appear to focus on cases where the
workload is assumed to be well characterized, rather than scientific evaluations.

3 Experiments

Common experiments include the comparison of several different implementa-
tions. However, we focus on a slightly different problem: We would like to com-
pare the same implementation before and after some change has been made,
typically with the intention to enhance the performance of the system. There
are two reasons for this: One is that there are currently many SPARQL imple-
mentations available, also Free Software ones that can be modified by anyone,
and the other is to constrain the scope of the study to comparing just two dif-
ferent things.

3.1 Setup

As the focus of this paper is didactical, the actual measurements are much
simpler than those that have been used in benchmarking. We have used the
data-set of DBPedia SPARQL Benchmark [?], but only consider the smallest of
their data-sets (that we found to be more than 15 MTriples). Moreover, we have
taken subsets of that data-set by using the last 1 or 2 MTriples from their file.

We have chosen 8 factors each having 2 levels, “TripleC” the number of triples
in the data-set, 1 or 2 MTriples, “Machine”, which is the software and hardware
platform, one larger with slower disks3 and one smaller with a faster disk4.

Then, we test some language features: “BGPComp”, which is a Basic Graph
Pattern of varying complexity.

Level 1 Level 2

?s rdfs:label ?l1 ;

?p1 ?o1 .

?o1 dbo:populationTotal ?l2 .

?s rdfs:label ?l1 ;

?p1 ?o1 .

?o1 dbo:populationTotal ?l2 .

?s foaf:page ?o2 ;

dbpprop:subdivisionName ?o3 .

?o3 skos:subject ?o4 ;

dbpprop:seat ?o5 ;

a ?c1 .

The following factors test the absence (at level 1) or presence (at level 2) of
the following clauses:

3 Running GNU/Linux Debian Squeeze, has 16 GB RAM, an Intel Core2 Duo E8500
CPU and two Parallel-ATA disks in a RAID-1 configuration

4 Running Debian Wheezy, has 8 GB RAM, an Intel Core i7-3520M CPU and a single
SSD on SATA-III



“Union” “Lang”

{

?o1 dbpprop:longd ?long ;

dbpprop:latd ?lat .

} UNION {

?o1 geo:long ?long ;

geo:lat ?lat .

}

FILTER langMatches( lang(?l1), "fr" )

“Range” “Optional”

FILTER (?l2 > 800000) OPTIONAL { ?o1 foaf:homepage ?o6 . }

These fragments have been carefully designed for illustrative utility, as well as
suitable selectivity. They are not themselves important, they only serve to il-
lustrate certain examples of possible factors. When the experiment is run, they
are combined to yield a query, which is then sent to a SPARQL endpoint. The
SPARQL endpoint is itself set up using 4store (see [?]) version 1.1.5.

Finally, “Implement” is the implementation undergoing evaluation. Level 1
is running the new implementation, whereas Level 2 is the old implementation.
The null hypothesis H0 is that the old implementation is as good as the new,
and the alternative hypothesis H1 is that the new implementation has overall
improved the performance of the system.

A real optimization is beyond the scope of this paper. Instead we have per-
formed a simulation that enables us to understand the effect of the changes.
In a real-world case, it is often the case that an optimization has negative side-
effects, and we would need to simulate both the optimization and the side-effects.
To do that, we degraded the performance of the 4store SPARQL implementa-
tion by inserting sleep statements. Specifically we inserted the C statement
sleep(2) on line 920 in src/frontend/query.c on level 1, to simulate the
optimization. This has the effect of delaying execution for 2 seconds for every
block for all kinds of joins. On level 2, we inserted usleep(2000) on line 987 in
src/frontend/filter.c to simulate the negative side-effect. This delays execu-
tion for 2 milliseconds every time the langMatches SPARQL function is called.

The experimentation is implemented in R [?], which is a free software environ-
ment for statistical computing and graphics. Necessary tools for DoE has been
implemented by the R community in packages called DoE.base [?] and FrF2 [?].
The experiments are run on a third computer in a 1 gigabit Ethernet LAN with
the two experiment hosts. On the experiment hosts, four 4store instances runs
sequentially and independently on different ports, where processes that are not
actively answering a query are idle. Practically, the “Machine” factor specifies a
hostname, whereas “TripleC” and “Implement” specifies a port number.

As response variable, we have chosen to use the time from the namespace
server lookup finishes to the data has been transferred. This choice is somewhat
arbitrary, many other response variables could be chosen, and indeed, future
work should explore multi-variable responses, but for simplicity, we think this



reflects the total amount of work done by the SPARQL endpoint well. For the
measurements, we have chosen to use the RCurl package [?], which is a thin
wrapper around the curl library. Curl has well developed facilities for timing
requests and responses, and so we rely on its measurements.

Finally, note that there are two common issues in benchmarking we do not
consider: we do not allow a warm-up run, nor do we take into account that the
server may cache all or parts of the result set. The reasons for this choice will
be discussed later.

All the code to reproduce this study as well as detailed instructions have
been published on Github: https://github.com/kjetilk/doe-sparql.

3.2 Full factorial experiment

In the full factorial experiment, all combinations of the 8 factors are executed,
in total 256 runs. This is called a 28 factorial experiment, and while it quickly
becomes infeasible for many factors, we shall nevertheless find the following small
example instructive. Note that each combination is executed only once (i.e. it
is unreplicated), however, so even a full factorial experiment compares well to
a typical benchmark in which each microbenchmark must be executed several
times to obtain enough data to compute a mean with reasonable certainty.

The above experimental setup is executed across a design matrix generated
with the DoE.base package, which returns a data frame consisting of the factors
with a column containing the corresponding curl measurements. With that, we
do as described in the introduction and fit a linear model with all factors. Then,
we generate a normal plot, see Figure 1. Any significant departure from a straight
line can be interpreted as a significant effect (see Section 4.8 of [?] for a detailed
explanation). In our case, it is most important to note that any effect that is
negative means the effect enhances the performance of the SPARQL endpoint,
the runtime decreases. If “Implement” and its interactions are negative condi-
tional on that the factors involved with its interactions are on their high level,
then it supports the alternative hypothesis, i.e. we have successfully improved
the performance.

To proceed beyond a visual judgment of significance, we may use Lenth’s
method [?], which is a simple method for estimating significance in an exper-
iment with no replicates. In Table 1, the most important effects are listed. In
Figure 1, Lenth’s method is used to label the significant effects. We see that we
have many very significant effects (unfortunately so many that some labels are
illegible). We also note that “Implement” itself is significantly negative and that
the “Implement:Lang” interaction is significantly positive, as expected from our
setup, where “Lang” was the detrimental side-effect we simulated.

To investigate whether the detrimental side-effects cancel the positive effect of
our simulated optimization, we have to formulate a hypothesis test. By inspecting
the normal plot in Figure 1 and Table 1, we see that six factors are highly
significant by either being a significant main effect or participate in a highly
significant interaction. We say that the two factors “Range” and “Machine” are
inactive since they do not contribute significantly to the observed variation in
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Fig. 1. A normal plot of the Full Factorial Experiment. The labelled points are con-
sidered significant by using the Lenth criterion at a level α = 0.05.

performance. “Machine” is marginally significant, but the effect is so little, it
will be of greater use for us in the following procedure. In practical situations,
the five factors “BGPComp”, “Lang”, “Optional”, “Union” and “TripleC” can
be regarded as given, i.e. we cannot change the size of the data-set without loss
of information, or change the query, since it gives a different answer. In practice,
we can only control “Implement”, i.e. we can only change the implementation.
In this context, we call “Implement” a control factor and the other five active
factors environmental.

We would like an overall test to see whether the new implementation is
better than the old, and the presence of inactive factors makes it possible to av-
erage the performance of the new and the old implementations into two distinct
vectors. We do this by creating an average over all the 32 level-combinations
of the five active environmental factors. This leaves us with 4 values for each
of the two levels of “Implement” and a two-sample t-test can be performed.
Effectively, we treat our experiment as a 26 experiment replicated 4 times.



Table 1. The magnitude of effects for
some important main effects and interac-
tions.

Factors Effect
Implement −21.27

Implement:Optional −11.49
Implement:Union −6.21

Implement:TripleC:Lang1 4.12
TripleC:Lang 4.20

Implement:TripleC 4.32
Implement:BGPComp 4.89

Lang:Union 5.16
Implement:BGPComp:Lang 5.16

BGPComp:Lang 5.25
Implement:Lang:Union 5.75

TripleC 7.06
Implement:Lang 7.73

Lang 8.62
Optional 11.30

Union 17.18

We perform the test as a one-sided
hypothesis test where H0 is that the
mean of the vectors are equal and H1 is
that mean sof the vectors representing
the new implementation is lower. In this
example, we find that the available data
supports the assertion that the new im-
plementation is better with a high prob-
ability, p = 1.16 · 10−07.

While it is interesting to test the
overall hypothesis that the new imple-
mentation is an improvement, it is also
interesting to know if there are cases
where it fails. Again, we treat the ex-
periment as a 26 experiment replicated
4 times. Now, for each of the 32 result-
ing combinations of the environmental
factors for each level of “Implement”,
we extract 4 values. We may now run
a t-test for each of the replications, as
above. The results are tabulated in Ta-
ble 2. We see that there are significant
improvements in most cases; one may
want to further investigate the cases

where they do not.

For future larger experiments, one must investigate whether it is necessary
to adjust the p-value due to the larger numbers of hypotheses tested.

The main objective of this paper is not to establish that the optimization is
significant, it is merely a simulation. It is to establish a critical practice of eval-
uations. We must therefore understand why some effects are significant. That
“Implement” is significant is hardly a surprise, that is what we worked for.
That the main effects “Union”, “Optional” and “Lang” are strong is also due to
that these are fairly demanding things to evaluate. Since the delay we inserted
affects all kinds of joins, it is also intuitive that interactions between “Imple-
ment” and those that require joins are strong. The strong “BGPComp:Lang”
and “Lang:Union” interactions might be due to that many more triples need to
be searched for a language tag in one of the levels of the interacting factors. How-
ever, the positive “Implement:TripleC” interaction evades such explanations; in
fact, it hints that our optimization may not work as well for larger databases.
By carefully inspecting Table 2, we see that whenever “TripleC” is at the low
level, the new implementation is always best. Only at the higher level, the old
implementation may be better. This is a clear indication that the separation be-
tween levels for the sizes of the data-set is too small and should be investigated
further. Such reasoning should be applied to all significant effects.



Table 2. p-values for different parts of the experiment

“TripleC” “BGPComp” “Lang” “Union” “Optional” p

1 1 1 1 1 0.012
1 1 1 1 2 1.4 · 10−09

1 1 1 2 1 3.1 · 10−09

1 1 1 2 2 6.1 · 10−11

1 1 2 1 1 3.3 · 10−06

1 1 2 1 2 2.7 · 10−09

1 1 2 2 1 2 · 10−06

1 1 2 2 2 3.6 · 10−10

1 2 1 1 1 0.014
1 2 1 1 2 1.2 · 10−10

1 2 1 2 1 2.8 · 10−14

1 2 1 2 2 4.1 · 10−15

1 2 2 1 1 2.1 · 10−05

1 2 2 1 2 2.7 · 10−07

1 2 2 2 1 0.0072
1 2 2 2 2 1.6 · 10−05

2 1 1 1 1 0.28
2 1 1 1 2 3 · 10−07

2 1 1 2 1 3.3 · 10−07

2 1 1 2 2 1.7 · 10−08

2 1 2 1 1 0.0023
2 1 2 1 2 6.5 · 10−07

2 1 2 2 1 0.00032
2 1 2 2 2 1.3 · 10−06

2 2 1 1 1 0.013
2 2 1 1 2 1 · 10−11

2 2 1 2 1 3.8 · 10−11

2 2 1 2 2 4.1 · 10−15

2 2 2 1 1 1
2 2 2 1 2 2.3 · 10−05

2 2 2 2 1 1
2 2 2 2 2 0.99

3.3 Fractional factorial experiment

As mentioned, the full factorial experiment goes as 2n and becomes prohibitively
expensive when n is a large number of factors. As the evaluation of SPARQL
endpoints is an inherently complex problem, a large number of factors are needed,
and so full experiments cannot scale. However, we may reduce the size of the
experiment significantly by sacrificing some explanatory power, in the form of
fractional factorial experiments.

We lose explanatory power due to aliasing ; for example, the interaction la-
belled “TripleC:BGPComp” may be aliased with the “Machine:Range” interac-
tion. That is to say, a detected increase in run time from larger Basic Graph



Patterns for large databases, can also be explained by a less powerful machine
that is worse at evaluating FILTER clauses with ranges. They are indistinguish-
able. This may or may not cause a problem. In many cases, we may not be
interested in these effects, we may only be interested in “Implement” and its
interactions. Moreover, it is possible (even easy using the FrF2 package in R) to
declare which effects must not be aliased, and determine the size of the experi-
ment based on that. Such a main effect or two-factor interaction is called clear
if none of its aliases are other main effects or two-factor interactions. Another
possibility to shrink the size of the experiment is if we a priori can say that
some effects are negligible. We have not found such assumptions to be tenable
in our case.

We have made two fractional factorial designs: One with 32 runs and one
with 64 runs. Again, the number of runs is in powers of 2, but much smaller. In
both cases, we have specified that all the factors must be clear and also all two-
factor interactions where “Implement” is involved must be clear. The resulting
experiments is returned to us as design matrices, but they can also be described
sufficiently for reproducibility in terms of design generators. These also declare
aliasing relations for some of the main effects. The design generators are

“Range” = “TripleC” “Machine” “BGPComp”
“Union” = “TripleC” “Machine” “Lang”

“Optional” = “TripleC” “BGPComp” “Lang” “Implement”
and

“Union” = “Implement” “TripleC” “Machine” “BGPComp”
“Optional” = “Implement” “TripleC” “Lang” “Range”
for the 32 and 64 run experiments respectively.
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Fig. 2. A normal plot of the Fractional Factorial Experiment with 32 runs. The labelled
points are considered significant by using the Lenth criterion at a level α = 0.05.

The resulting normal plot is in Figure 2. We see that only two main effects
are significant on a α = 0.05 level according to the Lenth criterion, “Implement”
is again deemed a significant improvement, and “Union” is deemed significantly



the hardest operation for the query engine. We see that some other points also
deviate from the straight line, but with as few runs as this, the total variance
is great, so no other conclusions can be drawn. We may use the t-test we used
in the previous section, as we have only two active factors and so we may treat
it as a 22 experiment with 8 replications. The resulting p = 0.00098 is still very
low, albeit larger than in the previous experiment. This also explains why there
are so few significant effects, and had to be expected with such a small number
of runs and thus higher variance.

For any other purpose than a rough idea of some key influences on the over-
all performance of the endpoint for the given levels, this little experiment is
insufficient.

We turn to the 64-run experiment and its normal plot in Figure 3. We see that
then we get more significant effects, and that they correspond well to those we
saw in the full factorial experiment. They also all have an intuitive explanation
as above. However, we do not see the effects that we found worrisome in the full
factorial design. The “Implement:TripleC” interaction emerges only for a level
α = 0.15. To ensure that we discover such cases will be a key challenge in further
studies.
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to FrF2 by the authors.



Since the 64-run experiment has 3 inactive factors, “Machine”, “TripleC” and
“Range”, we can treat it as a 25 experiment replicated twice. Using the same
procedure as above, we find that again, the hypothesis test indicates that the new
implementation is an improvement at p = 5.9 · 10−6. Again, the comparatively
higher p-value is due to the lower number of runs. It is also possible to perform
the per-environmental factors test.

3.4 Fractional factorial experiment with more data

The importance of finding flaws in the levels is highlighted by the normal plot
in Figure 4. The smaller experiment made it feasible to run with a larger data-
set, this experiment uses the original 15 MTriples data-set of [?]. The picture
is now as hinted in the previous discussion, for larger “TripleC”, our simulated
performance is actually worse, as evident from the positive “Implement”. We
also see that the interactions “Implement:Lang” and “Implement:TripleC” are
highly significant. It is clear what happened: For larger “TripleC”, the delay we
introduced in the langMatches function has a devastating effect, since it delays
the execution for every triple that the query engine applies the filter to, and
thereby completely dominates the execution time.

Moreover, we note that the “Machine” factor has become highly significant
in the other end along with its “Machine:TripleC” interaction. One should take
careful notice that the “Machine” factor encompasses many different things,
that should be different factors; CPU, disks, available RAM, installed software,
tuning parameters and so on. It is advantageous to have such broad factors in the
design in early experiments, because they may point out unexpected effects that
should be further scrutinized. The “Machine” factor is a good example of usage
that also helps us manage complexity: If possible, one may group many factors
into one if in doubt of their relevance and break it up in subsequent experiments
if deeper understanding is needed. To some extent, “BGPComp” is also a broad
factor, since it encompasses many structures that are normally seen in a Basic
Graph Pattern. In this case, the cause of the performance problem was highly
audible: It was the old P-ATA disks of the larger machine, but in general, such
clues are not available to the experimenter, therefore more factors are needed.

We are forced to conclude that the three preceding experiments are severely
flawed, as they failed to take into account the effects from larger data sizes on
slow hardware.

Note that we do not take advantage of the usual performance of 4store in this
simulation, to the contrary, we chose 4store because of its relative simplicity to
modify it to suit our needs for illustrative purposes, which consists of degrading
it in several ways. The small data-sets used here do not imply that the approach
will not work for large data-sets; properly configured, actual optimization will
give very different runtimes, and the small number of runs will make it possible
to evaluate a very large number of factors.
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Fig. 4. A normal plot of the Fractional Factorial Experiment with 64 runs where the
level 2 of “TripleC” is 15 MTriples. The labelled points are considered significant by
using the Lenth criterion at a level α = 0.05.

4 Discussion

It is a fundamental property of two-level experiments that they can only model
linear effects, however, they are usually quite sufficient for identifying significant
effects even though the underlying response may be non-linear. As we saw in
Section 3.2, the choice of levels may be critical, and if non-linearity is expected,
more than two levels must be considered, or at the very least, attention must be
paid to the choice of levels.

We have argued that fixing certain parameters is untenable, but we have
allowed ourselves to disregard caching and warm-up runs. We are aware that
caching may be important in 4store, as a preliminary experiment gave a response
time of 53.9 s of a query with “BGPComp” at level 2 but other factors at level 1.
When an OPTIONAL clause was added, the response time dropped to 1.25 s.
As this is not a more restrictive query, the most likely explanation is that the



result of the evaluation of the Basic Graph Pattern was cached, so only the
OPTIONAL left join was necessary to add in the second query.

We did this to illustrate randomization as this is what makes it permissible,
i.e. the order of execution is random, so the benefit of caching is likely to apply
randomly to different runs. For example, had the run order been reversed in the
previous example, it could have been the query without OPTIONAL that would
have benefited. Unless the effect of caching is cumulative throughout the ex-
periment (which is possible), the randomization will have the effect of reversing
the runs randomly. The end result is that the effect of so-called “lurking vari-
ables” such as caching, warm-up effects, etc, contribute to the total unexplained
variance of the experiment, but should not skew the results to invalidate the
estimated effects.

As the unexplained variance of the experiment may cloud important effects,
notably effects that indicate flaws, it should be kept to a minimum. Thus, lurking
variables should be turned into factors whenever possible, as they degrade the
quality of the experiment, but in many cases, we can live with them if their
contribution to the variance is small.

Finally, we note that the most problematic cases are those that are covered
neither by the broad factors, nor the lurking variables, or any of the specific
factors. We cannot in the general case be sure that they are accounted for,
so reviewers must remain vigilant that some factors are simply ignored. What
finally invalidates the present experiment is the complete absence of certain
obvious language features, such as solution modifiers.

5 Future Work

The present experiment is very primitive in its choice of factors, and we believe
that the strategy employed to construct suitable experiments will be the main
determinant for the long-term feasibility of this direction. One strategy will be
to start with broad factors such as “Machine” and refine them with experience.
Also, the data must be parameterized with many more factors than just the num-
ber of triples; data heterogeneity [?] is one example, but also queries over highly
skewed data is important. A more difficult issue is how to address the problem of
testing the whole SPARQL language [?]. We believe that the parameterization
work initiated by [?] with their SPLODGE system is a key ingredient. They pa-
rameterized SPARQL queries in such a way they could be auto-generated. One
suggestion is to parameterize queries based on the grammar, so that one factor
becomes the number of e.g. UNIONs, and the levels are chosen. One problem
one will soon run into is that parts of the language is recursive, e.g. a Group-
GraphPattern can consist of several GroupGraphPatterns. However, we believe
that pragmatic limits can be set, it is for example not of practical interest to
nest OPTIONALs to any great depth even if it is allowed by the language.

We saw in Section 3.3 that with a smaller experiment, fewer interactions are
significant, and so provide us with fewer clues to assess the soundness of the
experiment. This should be a focus of further research.



In this paper, we have only employed the simplest parts of the DoE theory.
What has been presented here is part of a much more general formalism known
as Orthogonal Arrays. The use of orthogonal arrays allow for different numbers
of levels, for much greater flexibility in total run size, and for non-regular de-
signs that can provide a good fit for the complex problem of SPARQL endpoint
evaluations.

Finally, as each run is cheap, and the experiment can usually run without
human intervention, we believe it is interesting as a case for advancing the state
of the art of DoE.

6 Conclusions

As evaluating SPARQL endpoints is inherently difficult, a simplistic experiment
such as the one we designed should not hold up to scrutiny. We set out to demon-
strate how an experiment could be set up using DoE, and show how it can be
analyzed. In sections 3.2 and 3.3, we first saw how the analysis correctly pointed
out the most important effects, under assumptions dictated by the factors and
levels that were given. We saw how the formalism provided a comprehensive view
of the experiment. Then, we saw that the formalism pointed out weaknesses that
could invalidate the experiment, and in Section 3.4 we saw that the experiment
did indeed not hold up to scrutiny.

We saw that while two-level experiments can perform well in determining
significant effects, they do not necessarily work well to find a model, as exem-
plified by failure to identify the possibly non-linear effect of the P-ATA disks in
the first experiments. This issue can be addressed by using an orthogonal array
design.

Also, experiments as small as the 32-run are not useful in estimating any
detailed characteristics and are thus of little use for science, but could be useful
in engineering: If the experiment has been validated by a larger experiment, it
could serve well in a Continuous Integration system.

We have seen that we can perform a proper hypothesis test based on sum-
mary statistics, and by using our expertise, we showed how to reveal that the
experiment was flawed, and we have cautioned that failure to control unexplained
variance may compromise our ability to do so. We have also pointed out how
this direction can provide more rigorous evaluation practices.

To this end, the following questions must be asked:

1. Are there factors that cover all realistic features?
2. If not, are they adequately covered by randomization?
3. If so, would the variance resulting from randomization obscure factors that

could provide clues that the levels are wrongly set?
4. By carefully examining interactions with “Implement”, are there any that

are unaccounted for, and that could point out wrongly set levels?

Even if the complexity is great, with properly tuned endpoints, it is feasible to
do millions of runs, and with orthogonal arrays, this formalism can be extended
to many different evaluation problems.
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