FedSearch: efficiently combining structured
queries and full-text search in a SPARQL
federation

Andriy Nikolov, Andreas Schwarte, Christian Hiitter

fluid Operations AG, Walldorf, Germany
{andriy.nikolov, andreas.schwarte, christian.huetter }@fluidops.com

Abstract. Combining structured queries with full-text search provides
a powerful means to access distributed linked data. However, executing
hybrid search queries in a federation of multiple data sources presents a
number of challenges due to data source heterogeneity and lack of sta-
tistical data about keyword selectivity. To address these challenges, we
present FedSearch — a novel hybrid query engine based on the SPARQL
federation framework FedX. We extend the SPARQL algebra to incor-
porate keyword search clauses as first-class citizens and apply novel op-
timization techniques to improve the query processing efficiency while
maintaining a meaningful ranking of results. By performing on-the-fly
adaptation of the query execution plan and intelligent grouping of query
clauses, we are able to reduce significantly the communication costs mak-
ing our approach suitable for top-k hybrid search across multiple data
sources. In experiments we demonstrate that our optimization techniques
can lead to a substantial performance improvement, reducing the execu-
tion time of hybrid queries by more than an order of magnitude.

1 Introduction

With the growing amount of Linked Data sources becoming available on the Web,
full-text keyword search is becoming more and more important as a paradigm for
accessing Linked Data. Already today the majority of triple stores support both
full-text search and structured SPARQL queries, allowing for hybrid queries that
combine these approaches. Given the distributed nature of Linked Data, efficient
processing of user queries in a federated environment with multiple data sources
has become a central research area in the Semantic Web Community [1, 2].

In practice there are many use cases where hybrid search is required. Consider
as an example a scenario involving a text-based database (e.g., a Semantic Wiki)
that offers access to its data via a SPARQL interface (e.g., through LuceneSail).
In addition, there might be one or more external RDF databases required to
fulfill the information needs of the user.

However, execution of hybrid search queries presents several challenges at
different levels. The first class of problems is caused by data source heterogeneity:
Because there is no formal representation of full-text index search included in

a) OWLIM? b) Virtuoso® ¢) LuceneSail*
SELECT ?page WHERE {

SELECT ?page WHERE { SELECT ?page WHERE { - . ”
?7id rdfs:label ?val . ?7id rdfs:label ?val . ;;ds::l;f_l'::?hﬁ:b£a;
?val luc:lucenelndex "obama" . 7?val bif:contains "obama" . :?m search:qro Zrt rde'iabel
?nytId owl:sameAs ?id . ?nytId owl:sameAs ?id . ; :property ' ’

?nytId owl:sameAs 7id .

?nytId nyt:topicPage ?page . ?nytId nyt:topicPage ?page . 7nytId nyt:topicPage 7page
3 [: 7 .

Triple store vendors use custom vocabularies to express keyword search: OWLIM uses the
http://www.ontotext.com/owlim/lucene# namespace (luc), Vituoso uses a predefined bif prefix
and LuceneSail uses the http://www.openrdf.org/contrib/lucenesail# namespace (search).

Table 1. Hybrid Search Queries for Different Selected Triple Stores

the standard SPARQL syntax!, triple store manufacturers model keyword search
clauses using proprietary vocabularies. Table 1 shows how a search for the term
“obama” and an associated news page is specified for three selected sample
repositories. The consequence of this heterogeneity is that hybrid queries written
for a particular triple store are system-specific, making it hard to define such
a query in a federated environment. Additionaly, a system has to deal with
semantic heterogeneity such as, for instance, different scoring schemes for result
ranking.

The second challenge concerns efficient runtime processing of hybrid queries
in order to minimize the execution time. Optimal ordering of operators and the
choice of processing techniques (e.g., nested loop join and symmetric hash join)
depend on the selectivity of graph patterns and characteristics of the federated
environment (e.g., hardware equipment and network latency of repositories). As
a federation may include external data sources, collecting statistical information
about remote sources may be infeasible (especially, if data is frequently updated).
While there are heuristics for estimating the selectivity of SPARQL graph pat-
terns using only static information (e.g., number of free variables, number of
relevant data sources), estimating the selectivity of keyword search requests can
be particularly difficult.

Finally, given that full-text and hybrid search queries often require only a
subset of most relevant results, they represent a special case of top-k queries.
Optimal processing techniques for such queries can be different from the ones
retrieving complete result sets.

With this work we make the following novel contributions:

e We propose an extension to the SPARQL query algebra that allows to repre-
sent hybrid SPARQL queries in a triple-store-independent way (Section 3).
On the basis of this algebra extension, we propose query optimization tech-
niques to match keyword search clauses to appropriate repositories, combine
retrieved results seamlessly, and reduce the processing time.

! http://www.w3.org/TR/sparqll1-query/

2 http://www.ontotext.com/owlim

3 http://virtuoso.openlinksw.com /rdf-quad-store/

4 http://dev.nepomuk.semanticdesktop.org/wiki/LuceneSail

e We propose novel runtime query execution techniques for optimized schedul-
ing of tasks (Section 4), supporting on-the-fly adaptation of the query execu-
tion plan based on a cost model. These mechanisms allow for time-effective
and robust execution of hybrid queries even in the absence of statistical data
about federation members.

e We present and evaluate FedSearch (Section 5), which allows to process hy-
brid SPARQL queries efficiently in heterogeneous federations. Our evalua-
tion based on two benchmarks shows substantial performance improvements
achieved with static and runtime optimization mechanisms of FedSearch,
sometimes reducing execution time by more than an order of magnitude.

2 Related Work

Processing queries in a federation of data sources has been studied for a long
time in the database community [3,4]. Although this research forms the ba-
sis for approaches tackling distributed Linked Data sources, differences in data
representation formats and access modes require special handling mechanisms.
Existing systems divide into two categories depending on the assumed data ac-
cess protocol: link traversal [5, 6], where new sources are added incrementally by
dereferencing URIs, and endpoint querying [1, 2], which assume a set of known
sources providing SPARQL endpoint services. While the former approach is tar-
geted at open scenarios involving public Linked Data sources, the latter is more
suitable for enterprise use cases that involve a set of internal repositories and
combine their data with selected third-party ones.

The tasks of a query processing engine involve matching query clauses to
relevant data sources, query optimization to find an optimal execution plan, and
query execution aimed at minimizing the processing time. Default federation
support in SPARQL 1.1% assumes explicit specification of graph patterns in
a SERVICE clause, which are evaluated at the specified endpoint. Some sys-
tems go further and automatically determine relevant data sources for different
query parts. For this purpose, SPLENDID [7] uses VoID[8] descriptors of feder-
ation members, while systems such as DARQ [9] utilize custom source profiles.
Avalanche [10] does not require having data source statistics in advance, but
gathers this information as part of the query optimization workflow. To avoid the
need for statistical data about federation members, FedX [1] uses ASK queries to
endpoints, while ANAPSID [2] utilises only schema-level information for source
selection and uses sampling-based techniques to estimate selectivity and adap-
tive query processing to adjust the execution process on the fly. A substantial
body of related work already exists on the topic of general SPARQL query op-
timization: e.g., in [11] an optimizer efficiently combining left-linear and bushy
query plans is proposed. A good empirical comparison of the behavior of systems
utilizing different join strategies is given by [12].

Keyword-based entity search over structured data represents a special case
of semantic search and has been studied in parallel to structured query process-

® http://www.w3.org/TR/sparqll1-federated-query/

ing (a survey of methods can be found in [13]). A natural evolution of purely
keyword-based search involves hybrid search combining both paradigms. For
processing such queries, Wang et al. [14] propose an extended ranking schema
taking into account features from both full-text and structured data. Although
existing approaches already provide complex and efficient query processing mod-
els, these techniques usually rely on detailed statistical information about both
structured and unstructured data stored in the repositories. For this reason, we
consider these methods complementary to our approach, which does not require
such apriori information.

Finally, full-text and hybrid queries often require results to be ranked ac-
cording to their relevance, while typically only the highest ranked ones are of
interest for the user. For this reason, hybrid search queries represent a special
case of top-k queries, in which the ranking function has to aggregate the ranking
scores associated with keyword search results. The SPARQL-RANK algebra [15]
was proposed to enable static optimization of query plans containing ORDER
and LIMIT modifiers. Our approach extends this algebra to incorporate full-text
search clauses. A complementary approach proposed in [6] focuses on top-k query
answering using link traversal for data access. This method features push-based
processing of algebra operators instead of traditional pull-based techniques to
reduce the effect of network latency issues and slow data sources.

3 Hybrid Search in SPARQL

Different triple stores use different syntax to express hybrid search SPARQL
queries. In order to process such queries in a federation of heterogeneous data
sources, a given query has to be tailored to the standards expected by each fed-
eration member. Given that keyword search clauses produce ordered result sets,
the query engine must be able to adjust the query plan to retrieve top-k ranked
query results in the most efficient way. To achieve this, our proposed approach in-
volves abstracting from repository-specific syntax and expressing keyword search
clauses in the query algebra in a uniform way. This section provides the necessary
background information and discusses our extension of the SPARQL query alge-
bra to represent hybrid queries and static query optimization techniques aimed
at minimizing processing costs.

3.1 Basic Definitions

In a SPARQL query, the WHERE clause defines a graph pattern to be evaluated
on an RDF graph G. An atomic graph pattern is a triple pattern defined as a
tuple from (IULUV)x (IUV)x (IULUV), where I, L, and V correspond
to the sets of IRIs, literals, and variables respectively. Arbitrary graph patterns
are constructed from triple patterns by means of JOIN, UNION, FILTER, and
OPTIONAL operators. A mapping is defined as a partial function g : V —
(I ULUB) (B is a set of blank nodes) [16], and the domain of the mapping
dom(u) expresses a subset of V' on which the mapping is defined. Then, the

semantics of SPARQL queries is expressed by means of a function [P]¢, which
takes as input a graph pattern P and produces a set of mappings from the set
of variables var(P) mentioned in P to elements of the graph G. The binding
of the variable 7z according to the mapping u is denoted as p(?z). The basic
query algebra then defines the standard operations (Selection o, Join X, Union
U, Difference \, and Left Join 1<) over the sets of mappings, and query evaluation
involves translating the query into a query tree composed of these operations.
For simplicity, in this paper we use the notation P; X P, to refer to the join
operation over sets of mappings produced by the patterns P; and Ps.

In order to allow efficient processing of top-k queries, the SPARQL-RANK
algebra [15] introduces a new rank operator p(P) which orders the set of input
mappings according to some scoring function F. The function F(by,...,b,) is
defined over the set B of ranking criteria b;(?x1,...,72,), where each rank-
ing criterion specifies a function over the set of variables var(P). Based on the
semantics of the rank operator, the SPARQL-RANK algebra proposes the rank-
aware modifications of the standard combination operators (RankJoin X? and
RankUnion U”) and defines algebraic equivalences which can be used to re-
formulate and optimize the algebraic query tree, such as rank splitting, rank
commutative law, and propagation of rank over union and join operations.

3.2 Background: FedX Federated SPARQL Query Engine

FedX [1] provides a framework for transparent access to data sources through
a federation. It establishes a federation layer which employs several static and
runtime optimization techniques. Static optimization includes reordering join
operands with the aim of evaluating selective query parts first and executing
filters early to reduce the size of intermediate results. At runtime FedX utilizes
sophisticated join execution strategies based on distributed semijoins. One such
strategy is the Bind Nested Loop Join (BNLJ) algorithm denoted by Mgy s
— a variation of the block nested loop join, in which each subquery sent to a
remote data source probes it at once for several partial mappings pulled from the
left operand. This significantly reduces the number of required remote requests.
In addition, FedX applies pipelining to compute results as fast as possible: a
special scheduler maintains a queue of atomic operations, and processes them
in parallel. Instead of waiting for execution of each subquery in sequence, the
system sends them in parallel and collects results as soon as they arrive, which
further improves the execution performance.

The system further identifies situations where a query can be partitioned into
so-called exclusive groups Y., which combine several triple patterns that can
be evaluated together on the same data source. All these optimization techniques
are applied automatically and do not require any interaction with the user. An
important feature of FedX is its independence from statistical data about the
federation members. Instead of relying on indexes or catalogs to decide on the
relevance of a source, FedX uses caching in combination with SPARQL ASK
queries. In this way it allows for on-demand federation setup (meaning that

data sources can be added and removed from the federation at query time). Our
extension of FedX — FedSearch — maintains this property.

3.3 Hybrid Search in SPARQL Algebra

To enable hybrid queries without modifying the SPARQL syntax, existing triple
stores express keyword search using special graph patterns which use proprietary
vocabularies. At evaluation time, the query engine recognizes these special terms,
extracts the search parameters (keywords and projected variables), evaluates the
keyword search using its full-text index, and returns a set of mappings binding
the projected variables to search answers and their properties (related resource,
matched value, relevance score). Thus, graph patterns defining search parameters
do not follow the SPARQL semantics, as their result sets are in general not
equivalent to the result of algebra operations combining the mapping sets of their
constituting triple patterns. This has strong implications for federated query
processing, as triple patterns related to keyword search cannot be evaluated
separately either on the same or different federation members. Such proprietary
graph patterns have to be recognized by the query engine, isolated, and evaluated
as whole blocks.

For this purpose, FedSearch introduces the notion of a keyword search group
as a special graph pattern in the query tree.

Definition 1: A keyword search group X5° is a tuple (q,v,r, s, p, sn) defined
as follows:

— q € L - a literal value representing the keyword query

— v e (VU{nil}) - a variable bound to a literal value matching the keyword

— s€ (IUV) - a subject resource connected to v.

— pe (IUV U{nil}) - a property connecting s to v

—r € (VU{nil}) — a variable bound to a literal value between 0 and 1 rep-
resenting a normalized keyword search score (1 corresponding to the highest
degree of relevance)

— sn € (VU{nil}) — a value snippet highlighting the matching keywords

The value nil provided for a tuple element implies that the corresponding
value or variable does not need to be included in the query: e.g., the queries
shown in Table 1 do not explicitly project the relevance score.

Some of these elements are source-dependent: e.g., not all data repositories
can provide the value snippet (a standard feature of LuceneSail, but not available
in OWLIM), or, more importantly, returned score values cannot be compared
across different data sources, even those of the same type. Traditionally, methods
for combining ranked search results [17,18] primarily rely on the analysis of
matched values and re-estimation of their relevance to the query string. This
procedure, however, is too costly in the context of SPARQL query processing,
as it requires additional downloading, parsing, and processing of whole matched
values. Thus, meaningful ranking of the combined result set according to some
common relevance criterion is impossible without knowing the statistics of back-
end repositories.

For this reason, FedSearch operates over normalized query scores lying in the
interval [0, ..., 1]. It also applies the algebra operators RankUnion and RankJoin.
The RankUnion operation over normalized scores (1) preserves the order of re-
sults retrieved from the same source and (2) ensures that results from one source
do not suppress results from another source due to different scales. To combine
ranking scores from different keyword search groups, the RankJoin operation ap-
plies the function F(ry,7r2) = avg(ry,re). This function preserves monotonicity
of the result ranking with respect to the original scores (i.e., if (r1[p1] < r1[p2])
AND (ra[p] < rafps]) = (F(ri[pa], r2lpm]) < F(ri[pz], rafps])), while also tak-
ing both scores into account and maintaining the original scale.

3.4 Static Query Optimization

FedSearch assumes that the user’s query is expressed using the vocabulary sup-
ported by one of the federation members. By default, the parsed query tree
only consists of basic SPARQL operations applied to atomic triple patterns: for
example, Figure 1 shows the initial plan for the example query from Table 1
expressed in LuceneSail syntax. The original FedX system applies static query
optimization techniques aimed at adjusting the given query to the federated en-
vironment: matching triple patterns to relevant sources, combining together the
exclusive groups of triple patterns, reordering join operands according to their
estimated selectivity.

TT 7page
X
X (nytld, nyt:topicPage, ?page)

X (?nytld, owl:sameAs, ?id)

N

/ X (?m, search:property, rdfs:label)

(?id, search:match, ?m) (?m, search:query, ‘Obama’)

Fig. 1. Unoptimized hybrid search query tree

To process a hybrid query, the task of the static optimization stage includes
three additional subtasks:

Detecting and isolating keyword search groups. At this stage, the query
optimizer selects and groups triple patterns, which together form keyword
search groups. In the query tree, these triple patterns are replaced with
a single YK pattern. The result of this stage is an abstract query tree
independent of concrete triple stores.

Mapping keyword search groups to relevant data sources. Unless the tar-
get is given in the SERVICE clause, each %% can potentially produce map-
pings from any data source supporting full-text search. Accordingly, the X 5°
is replaced with the grounded repository-dependent graph pattern Efs ,
which is associated with all endpoints of the same type (LuceneSail, Virtu-
0s0, etc) and contains corresponding source-dependent triple patterns. The
federation configuration contains the backend repository type of its mem-
bers. If the federation includes repositories of several types, the keyword
search group is replaced with a union of several grounded keyword search
groups. The result of this stage is a grounded query tree.

Modifying the query tree to take result ranking into account. Each key-
word search graph pattern X 5(9 is expanded to return the score value 7, if
it does not project the relevance score explicitly,

T " page
X P

/

P (?nytld, nyt:topicPage, ?page)

U” (?nytld, owl:sameAs, ?id)
KS / 1‘:5'\ KS
P PO b
(‘Obama’, 7id, rdfs:label) (‘Obama’, ?id, rdfs:label) (‘Obama’, 7id, rdfs:label)
@ LuceneSail @ Virtuoso @ OWLIM

Fig. 2. Grounded and optimized hybrid search query tree

The resulting expanded query tree is further processed to enforce the ordering of
final results according to the combined score F({r;}) and to minimize the query
execution time. For this purpose, equivalence relations defined in the SPARQL-
RANK algebra are applied:

— Partial ranking criteria r; of keyword search clauses are propagated towards
the root of the query tree. This involves converting the standard Union and
Join operations to corresponding RankUnion and RankJoin according to the
rules defined in [15]. Relevance scores are combined using normalization and
averaging, as discussed in section 3.3

— Top-level ordering criteria (if defined) are propagated down the query tree
so that atomic clauses produce their mapping sets already ordered.

— LIMIT thresholds are moved towards the leaves of the tree using the relation
SLICE(P, U Py, lim) = SLICE(SLICE(Py,lim) U SLICE(P,lim), lim).
This reduces the costs of local evaluation of keyword search clauses as well
as network resources for transferring result sets.

Figure 2 shows the result of the static optimization operations applied to the
example query from Table 1 for a federation including repositories of three types:
OWLIM, Virtuoso, and LuceneSail.

4 Optimizing Top-k Hybrid Query Execution

Although static query optimization already helps to reduce the expected exe-
cution time, the actual performance strongly depends on the way the operators
(primarily, joins) are processed. The Bind Nested Loop Join technique of the
original FedX system significantly reduces the number of required remote re-
quests by grouping together several binding sets in one probing request and
using pipelining.

For processing top-k queries and hybrid queries in particular, however, this
mechanism is insufficient for several reasons:

— Optimal scheduling of remote requests can differ for top-k queries and queries
without a LIMIT modifier. For top-k queries it is important to produce the
first complete results as soon as possible, even at the cost of some extra syn-
chronization time, as it can possibly make processing of low-ranked partial
results unnecessary.

— More importantly, performance strongly depends on the order of operands.
In case if one operand is more selective than the other, reversing their order
leads to big differences in execution time. While static optimization tries to
sort the join operands according to the expected selectivity, there is no way
to estimate selectivity of keywords in the general case.

To deal with these issues, we apply runtime join processing optimization tech-
niques: synchronization of loop join requests and adaptive parallel competing join
processing for queries containing several ordered clauses.

4.1 Synchronization of Loop Join Requests

As an example, let us consider a hybrid search query, which searches for all drugs
interacting with aspirin and their side effects, while taking input in different
languages:

SELECT 7drugName 7sideEffect WHERE {
?val luc:lucenelndex "acetylsalicylsiure" . //DBpedia
?7idl rdfs:label 7val .
?7id2 owl:sameAs 7idl . //DrugBank
?7interaction drugbank:interactionDrugl 7id2 .
7interaction drugbank:interactionDrug2 7id3 .
?id3 rdfs:label ?drugName .
?7id3 owl:sameAs ?7id4 .
?id4 sider:sideEffect 7sideEffectId . //SIDER
7sideEffectId rdfs:label 7sideEffect .

O© 00 N Ol WN -

}

This query involves combining data from 3 sources: DBpedia® (triple patterns
1-2), DrugBank’(3-7), and SIDER®(8-9). During the static optimization stage

5 http://dbpedia.org
" http://wifo5-04.informatik.uni-mannheim.de/drugbank/
8 http://wifo5-04.informatik.uni-mannheim.de/sider/

these triple patterns are combined into 3 groups, which we denote as L% (DB-
pedia), X5 (DrugBank), and X5 (SIDER). When performing a bind nested loop
join, the algorithm will iterate through the mapped tuples p; of the 259 result
set and probe the second operand X5 binding the variable 7id1. While gradually
receiving results p;; from (XKS Mpyrs X2) and iterating through them, the
last operand X3 will be joined using the mappings ;;(?id4). As described in [1],
this process is parallelized so that each probing subquery in the nested loop is
scheduled in a processing queue and then sent in a separate thread. However,
depending on the scheduling approach, the process can be performed in two
ways:

— Breadth-first: In this way, all probing subqueries will be immediately added
to the processing queue. Thus, the executor will first send all subqueries for
Yo (p4(?4d1)) and only then, while results are arriving, send the subqueries

— Depth-first: In this way, when the results from Xo(u;(?id1)) begin to arrive,
and subqueries for X3(u;;(?id4)) are added to the queue, the executor im-
mediately moves them to the start of the queue, even if not all X (u;(?id1))
requests have been sent yet.

Depending on the type of the query, FedSearch decides on using either of the two
techniques. For top-k queries, the depth-first technique is applied. This involves
additional synchronization costs to manipulate the task queue and maintain the
result set ordering: results returned by probing subqueries to the operands X,
and X5 must be processed in the same order as they were sent. However, the
depth-first approach allows receiving first complete results early and potentially
terminate the processing early after k results are collected. On the contrary, the
breadth-first approach gives an advantage when a complete result set is required:
because all nested loops have to be executed completely, extra synchronization
handling is unnecessary.

4.2 Adaptive Processing of Rank-Join Operators: Parallel
Competing Joining

If a query contains more than one keyword search clause, it is impossible to
determine the more selective one without possessing the distribution statistics
of keywords. As a result, the join sequence determined at the static optimization
stage can lead to a non-optimal execution plan. To avoid this, in the following we
present, parallel competing rank join processing, a novel technique which allows
on-the-fly adaptation of the query plan at execution time.

Processing N-ary join The high-level idea of this technique is to use a subset
of the join operands as seeds to allow adaptive query processing. In particular,
competing join plans for those operands that determine the ordering are executed
in parallel — thus competing against each other — while the other join operands
are computed iteratively using the intermediate results from the seeds as soon as

they arrive. Whenever an iteration completes with processing its partial result
set, a re-evaulation of all query plans takes place to ensure that the next operand
is joined to the most selective seed. Finally, the ordered intermediate result
sets of competing join plans are combined using the N-ary Pull/Bound Rank
Join algorithm (PBRJ) [19], which produces the results ranked according to the
aggregated scores of its operands.

Algorithm 1 a) depicts our Parallel Competing Rank Join technique. Given
the set of ranked join operands P” (including all X%9 groups) — the seeds —
and the set of unranked operands P“, our algorithm first determines suitable
competing join plans and then executes each competing seed P’ in parallel.
The incoming intermediate results are processed and joined using the cost-based
adaptive query technique explained below, yielding ordered results sets for each
competing join plan. To combine the partial result sets produced by all seeds,
FedSearch uses the N-ary PBRJ variant which modifies the symmetric hash join
technique to process RankJoin in an efficient way.

Algorithm 1 Adaptive Processing of Rank Joins

a) Parallel Competing Rank Joins b) Processing Incoming Results

1: PP: ranked operands (incl. all K5) 1: procedure PUSHRESULTS(Peurr, [Peurr]G)
2: PY: unranked operands 2: Prlegt « Qeurr.newt “
3 Plefy < PY 3: ¢ =cost(Peurr MBNLJ Pheat)
T 4: for all P; # P, do
) P i curr
4: for all P € PP do 5: pos = Q;.indexOf(PY 1)
5 Q; « joinOrderSort(PY) 6: c; = costLeft(P;))
P os
6: P; < P} 7 +Z§?:1 cost(P; MpNL P]?L)
7: start(P;) 8: +eost(Py MBNLJ Phest)
8: ... 9: if ¢; < ¢ then
9: if pleft = 0 then 10: return
10 return PBRJ({P;}) 11: Peyrr < Peurr MpNLJ Phert
12: for all Q,; do
13: Qi < Qi\{Prege}
14: Prefe — PFON{PY, L}
15: start(Peyrr)

The processing step of incoming intermediate results is depicted in Algo-
rithm 1 b). Whenever a seed-computation has received the complete result set
[Pewrr] e for its current operation, a re-evaluation of the execution plans takes
place. The re-evaluation procedure estimates the cost ¢ of executing the join
Peyrr W PY, . and compares it to the respective costs ¢; of joining the operand

PY .. as part of other “competitor” query plans. The cost model used in Algo-
rithm 1 b) is described in detail in the following.

Estimating join cost The basis for our cost model is the average request time
of a Bind Nested Loop Join (BNLJ) operation at a remote SPARQL service. In
general, these execution times can differ substantially for two different queries
over the same endpoint. However, FedSearch only estimates the cost of BNLJ
subqueries over single triple patterns, which have similar access times. For that
reason, FedSearch keeps the statistics of executing BNLJ requests including the
average execution time for the data source 7,,4(s) and the average execution

time over all sources 7,,4. Note that the latter value is used instead of T,44,4(s) if
for some source s there is no sufficient historical data.

Cost of a future join. In Algorithm 1, the cost of a join is estimated based on
the average request time and the known cardinality of the received result set
according to the following formula:

(N(TPcl) = 1) * Tavg(s)
H(Pyew M P) =
cost(BNLJ ¢) Nonreaa/|P?]

Here N(|[P;]c|) denotes the number of probing subqueries where according
to BNLJ each subquery holds bindings for multiple mappings p € [P;]. If the
operand P?, . has multiple data sources, we use the maximal average execution
time of all sources, denoted by max(T4vg(s)). Finally, Nipreqq holds the number
of parallel worker threads used by the system, which means that processing one
of the competing query plans can utilize on average Nypreqd/|P*| threads, where
PP denotes the set of ranked operands (i.e., the seeds).

For non-atomic operands involving other joins and unions, the cost is deter-

mined as follows:

+ Tavg(8)

— if the operand is a union, the cost is determined by the maximum cost of
the individual union operands multiplied by a coefficient w that estimates
the additional cost of combining the results.

— if the operand is a join, left-join or difference, the cost is determined by the
sum of the individual costs of the join operands.

Estimating costs of competing branches. The cost ¢; of joining the next operand
PY... as part of a join sequence @);, which competes with the current sequence

Q curr, consists of two components:

1. the remaining cost of the current operation, denoted by costLeft(P;).
2. the cost of joining P; with all operands in @; until Py, (inclusive):
;’i‘sl cost(P; Mpnry P}') + cost(Pi Mpnry Pi.yy)

The remaining cost is only considered if the operation is running, and can
be estimated as costLeft(Py) = Tpassed * (% — 1), where Tpgsseq is the
time since the start of the operation, Ny is a total number of subqueries sent,
and Nycceived 18 the number of subqueries for which results have already been
received.

Decision on joining the next operand. Depending on the computed costs for
the competing execution sequences @;, FedSearch decides to either execute a
sequence or reject it. If the cost ¢ is found to be lower than all competitors’
costs, the respective execution sequence continues. Otherwise, the execution of
the current sequence Q¢ is considered rejected in favour of a competing plan
Qcomp- Note that a rejected execution plan can be re-initiated, if during process-
ing of Qcomyp its cost is re-estimated to be higher than @y, and the operand

PY... has not been joined as a part of Qcomp yet.

In this way, multiple ranked operands are processed in an efficient way: due to
the cost estimation process and the fact that more selective seed queries usually
return results earlier, new operands are naturally joined to the more selective
seed, thus minimizing the number of required nested loop join subqueries.

5 Evaluation

To validate the FedSearch approach, we performed experiments with two dif-
ferent benchmark datasets. First, we reused the LUBMIft query benchmark pro-
posed in [20] for evaluating full-text search performance of RDF triple stores. The
benchmark extends the well-known LUBM university benchmark dataset [21]
with full-text data and includes a comprehensive set of full-text and hybrid
SPARQL queries testing various performance aspects. Second, we reused the
set of Life Sciences data sources from the FedBench benchmark for federated
query processing [22]. Since FedBench does not include hybrid search queries,
we have extended the query set with 6 additional queries involving full-text
search clauses. In both sets of experiments target endpoints were hosted as sep-
arate OWLIM repositories on a Windows server with two 3GHz Intel processors
and 20GB of RAM. We compared the runtime query processing techniques of
FedSearch with two other systems: the original FedX architecture and ARQ-
RANK, the open source implementation of SPARQL-RANK algebra provided
by its authors®. The original FedX architecture made use of the static optimiza-
tion techniques described in section 3.4 (so that full-text search clauses could be
matched to appropriate sources), but not the runtime optimization. For ARQ-
RANK, which cannot automatically determine relevant data sources, the queries
were expanded so that each graph pattern was explicitly targeted at relevant
endpoints using SERVICE clauses. Each query was executed 10 times, out of
which the first 5 queries were considered “warm-up” to fill the relevant endpoint
caches, while the result was equivalent to the average over remaining 5 runs.
Benchmark queries, the complete results of the tests, as well as a downloadable
version of FedSearch are available online on our web site'?.

5.1 LUBMIft benchmark

To perform tests with the LUBMft benchmark dataset, it has been split into
6 parts which represented different endpoints: generated dump files were dis-
tributed equally between endpoints resulting in a horizontal partitioning. The
benchmark includes 24 queries aimed at testing different triple store capabili-
ties related to keyword search. We used only the first 14 queries covering pure
full-text search and hybrid search. Out of these, 8 queries contain only key-
word search clauses, while 6 queries are hybrid: 3 queries containing 1 key-
word search clause, 2 queries with 2 clauses, and 1 query with 3 keyword search
groups. Table 2 shows the average query processing times achieved on the largest

9 http://sparqglrank.search-computing.org/
10 http:/ /fedsearch.fluidops.net /resource/FedSearch

k [System ql.1|ql.2 |[q3 qd |qb q7 q8 q9 ql0 qll Geom.
Mean
Nanswers 1933(51257(52784(51 1933 {1933 |704 60 2783 15
FedSearch 0.33 {12.51 {13.39 |0.04{4.96 [9.93 [13.42 [13.36 [22.58 14.20 4.75
all [FedX 0.29 [12.54 [13.22'[0.02[5.53 [6.58 [18.87 [110.48[455.19 (2)[396.79 (2)[10.24
ARQ-RANK]0.62 [12.72[13.01 [0.22]32.79]66.65[169.34|142.75| Timeout |[Timeout [13.63
FedSearch 0.08 [0.11 |0.10 |0.04{0.80 [1.23 [5.01 |10.22 [26.71 15.48 0.96
100[FedX 0.35 [11.53 [13.34 [0.03[4.22 [8.79 [17.82 [123.07|459.90 (3)[106.92 (3)[9.41
ARQ-RANK][0.58 [1.60 [5.07 [0.22]2.16 [4.79 [18.84 [142.75[Timeout [Timeout [3.60
FedSearch 0.03]0.34 [0.04 [0.03/0.58 [0.73 [3.55 [11.88 [24.25 16.71 0.78
10 |FedX 0.29 [11.56 [12.51 [0.27(4.31 |7.76 |18.26 [144.22|456.18 153.83 (3)[12.15
ARQ-RANK]|0.57 [1.59 [1.52 [0.22[0.67 [0.98 [1.66 [142.75|Timeout |Timeout [1.62
FedSearch 0.020.04 [0.04 [0.02[0.74 [0.72 [1.82 [11.47 [23.95 15.09 0.54
1 [FedX 0.43[11.54 [12.93[0.02[4.21 [8.03 [17.94 [135.80[455.32 (3)[398.25 (3)[10.42
ARQ-RANK]0.57 [1.59 [1.52 [0.22]0.54 [0.63 [0.41 [142.75|Timeout |[Timeout [1.25

Table 2. Average execution time (sec) for LUBMIft queries (N=>50) taken over 5 query
runs. Numbers in brackets indicate the number of runs which resulted in timeout.

LUBMft dataset (N = 50)!'. For all values of k FedSearch achieved the best
overall performance. For pure full-text queries (g1.1 - ¢4) performance of all
three systems is similar when the complete result set is required. However, for
top-k queries applying static optimization (pushing the limit modifier to atomic
clauses) reduces the cost of remote evaluation and result set transfer over the net-
work. FedSearch further improves on this due to parallelization. Hybrid queries
with a single FTS clause (¢6-¢8) demonstrate respective benefits of depth-first
and breadth-first N-ary join processing: the former gives an advantage when ex-
ecuting top-k queries (FedSearch and ARQ-RANK outperform FedX) while the
latter is preferred when a complete result set is required. Finally, queries ¢9-q11,
which contain two or more FTS clauses, illustrate the benefits of the parallel
competing rank join algorithm. Results obtained for FedSearch and two other
systems differ sometimes by more than one order of magnitude, while FedSearch
delivers more robust performance: evaluation time does not depend on the join
order produced at the static optimization stage.

5.2 FedBench Life Sciences benchmark

The Life Sciences module of the FedBench benchmark includes 4 datasets con-
taining medicine-related data: KEGG'2, DrugBank'3, ChEBI'4, and a subset of
DBpedial!®. To test hybrid query performance we used a set of 6 queries, which
we constructed with the following requirements:

— Each query requires accessing at least 3 datasets from the federation.

— Queries include different proportion of full-text vs graph clauses: 2 queries
are full-text only, 2 queries are hybrid with 1 full-text search clause, and 2
queries are hybrid with 2 full-text search clauses.

11 Queries 2.1, 2.2, 5.1, and 5.2 are skipped due to the lack of space, as they are largely
redundant with respect to 1.1 and 1.2. However, they are included in our complete
result set available online as well as results for N = 1,5, 10.

12 http://www.genome.jp/kegg/keggl.html

13 http:/ /wifo5-04.informatik.uni-mannheim.de/drugbank/

' http://www.ebi.ac.uk/chebi/userManualForward.do

!5 http://dbpedia.org

— Full-text search clauses have different degrees of selectivity.

Evaluation results with these queries are shown in Table 3 (due to smaller size
of result sets, we only performed experiments with & = 10). The scale of differ-
ences between processing engines is smaller than in case of horizontal partioning:
mainly because triple patterns with bound predicates do not need to be eval-
uated on all endpoints, which reduces the overall number of required remote
requests. However, the results are largely consistent with the LUBMI{t experi-
ments. For pure full-text top-k search, applying static top-k optimization leads
to substantial performance improvement if the overall result set is large. For
hybrid queries with a single keyword search clause using depth-first N-ary join
processing reduces execution time (ARQ-RANK even marginally outperforms
FedSearch due to “fixed costs” of static optimization), while, however, it be-
comes a drawback when a complete result set is required. Finally, for hybrid
queries with multiple FTS clauses the parallel competing bound join algorithm
provides a clear advantage.

k [System ql [q2 (g3 [q4 a5 |q6 Geom.
Mean
Nanswers 8129(57 (2551930 |15 |22
FedSearch 0.50 {0.09(0.55(6.20 |2.33|7.40 |1.17
all[FedX 0.72]0.03]0.666.42 |8.47[28.53[1.62
SPARQL-RANK]0.95 [0.24[3.24[32.10[4.56]21.54[3.64
FedSearch 0.06 |0.03]0.74(0.81 |2.36(7.85 [0.50
10 [FedX 0.7810.02[0.70[6.34 [5.30[38.32|1.57
SPARQL-RANK]0.07 [0.01[0.12]0.42 [3.73[21.41[0.39

Table 3. Average execution time (sec) for Life Science queries taken over 5 query runs.

6 Conclusion and Outlook

In this paper, we proposed novel static and runtime optimization techniques as
a means to enable processing hybrid search queries in a federation of SPARQL
endpoints. The evaluation of our implemented system, FedSearch, has shown
that it allows for substantial reduction of processing time without relying on
statistical data about the content of federation members.

One immediate practical benefit provided by FedSearch is the possibility to
realize data access to a diverse set of sources including different triple stores
and full-text indices through a common access interface. As a future direction
of work, we are planning to utilize this ability to support practical use cases
requiring end-user applications to consume data stored in multiple data sources
in a seamless way.

While the ability to establish on-demand federation without significant addi-
tional effort is a requirement for our system, existing statistical data (e.g., VoID
descriptors) can be utilized to further improve its performance. Employing addi-
tional techniques to estimate keyword selectivity (e.g., based on [23]) constitutes
another promising direction.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization
techniques for federated query processing on linked data. In: ISWC 2011

. Acosta, M., Vidal, M.E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: An

adaptive query processing engine for SPARQL endpoints. In: ISWC. (2011)
Sheth, A.P.: Federated database systems for managing distributed, heterogeneous,
and autonomous databases. In: VLDB ’91. (1991) 489

Kossmann, D.: The state of the art in distributed query processing. ACM Com-
puting Surveys 32(4) (2000) 422-469

Hartig, O.: Zero-knowledge query planning for an iterator implementation of link
traversal based query execution. In: ESWC 2011, Heraklion, Greece (2011) 154-169
Wagner, A., Tran, D.T., Ladwig, G., Harth, A., Studer, R.: Top-k linked data
query processing. In: ESWC 2012, Heraklion, Crete (2012) 56-71

Gorlitz, O., Staab, S.: Splendid: Sparql endpoint federation exploiting void de-
scriptions. In: COLD2011, at ISWC 2011, Bonn, Germany (2011)

Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets
- on the design and usage of void. In: LDOW’09. (2009)

Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In:
ISWC. Volume 5021., Springer (2008) 524-538

Basca, C., Bernstein, A.: Avalanche: Putting the spirit of the web back into Se-
mantic Web querying. In: SSWS2010 Workshop. (2010)

Vidal, M.E., Ruckhaus, E., Lampo, T., Martinez, A., Sierra, J., Polleres, A.: Effi-
ciently joining group patterns in SPARQL queries. In: ESWC 2010. (2010) 228-242
Montoya, G., Vidal, M.E.; Corcho, O., Ruckhaus, E., Aranda, C.B.: Benchmarking
federated sparql query engines: Are existing testbeds enough? In: ISWC 2012.
(2012) 313-324

Tran, T., Mika, P.: Semantic search - systems, concepts, methods and the commu-
nities behind it. Technical report

Wang, H., Tran, T., Liu, C., Fu, L.: Lightweight integration of IR and DB for
scalable hybrid search with integrated ranking support. Journal of Web Semantics
9(4) (2011) 490-503

Magliacane, S., Bozzon, A., Valle, E.D.: Efficient execution of top-k SPARQL
queries. In: ISWC 2012, Boston, USA (2012) 344-360

Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
TODS 34(3) (2009)

Craswell, N., Hawking, D., Thistlewaite, P.B.: Merging results from isolated search
engines. In: Australasian Database Conference. (1999) 189-200

Si, L., Callan, J.: A semisupervised learning method to merge search engine results.
ACM Transactions on Information Systems 21(4) (2003) 457-491

Schnaitter, K., Polyzotis, N.: Optimal algorithms for evaluating rank joins in
database systems. ACM Transactions on Database Systems 35(1) (2008)
Minack, E., Siberski, W., Nejdl, W.: Benchmarking fulltext search performance of
RDF stores. In: ESWC 2009, Heraklion, Greece (2009) 81-95

Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base
systems. Journal of Web Semantics 3 (2005) 158-182

Schmidt, M., Gorlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench:
A benchmark suite for federated semantic data query processing. In: ISWC 2011
Wagner, A., Bicer, V., Tran, T.D.: Selectivity estimation for hybrid queries over
text-rich data graphs. In: EDBT 2013, New York, NY, USA, ACM (2013) 383-394

