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Abstract. The vision behind the Web of Data is to extend the cur-
rent document-oriented Web with machine-readable facts and structured
data, thus creating a representation of general knowledge. However, most
of the Web of Data is limited to being a large compendium of encyclo-
pedic knowledge describing entities. A huge challenge, the timely and
massive extraction of RDF facts from unstructured data, has remained
open so far. The availability of such knowledge on the Web of Data would
provide significant benefits to manifold applications including news re-
trieval, sentiment analysis and business intelligence. In this paper, we
address the problem of the actuality of the Web of Data by presenting
an approach that allows extracting RDF triples from unstructured data
streams. We employ statistical methods in combination with dedupli-
cation, disambiguation and unsupervised as well as supervised machine
learning techniques to create a knowledge base that reflects the content of
the input streams. We evaluate a sample of the RDF we generate against
a large corpus of news streams and show that we achieve a precision of
more than 85%.

1 Introduction

Implementing the original vision behind the Semantic Web requires the provision
of a Web of Data which delivers timely data at all times. The foundational
example presented in Berners-Lee et al’s seminal paper on the Semantic Web [3]
describes a software agent who is tasked to find medical doctors with a rating of
excellent or very good within 20 miles of a given location at a given point in time.
This requires having timely information on which doctors can be found within 20
miles of a particular location at a given time as well as having explicit data on the
rating of said medical doctors. Even stronger timeliness requirements apply in
decision support, where software agents help humans to decide on critical issues
such as whether to buy stock or not or even how to plan their drive through urban
centers. Furthermore, knowledge bases in the Linked Open Data (LOD) cloud
would be unable to answer queries such as “Give me all news of the last week
from the New York Times pertaining to the director of a company”. Although



the current LOD cloud has tremendously grown over the last years [1], it delivers
mostly encyclopedic information (such as albums, places, kings, etc.) and fails
to provide up-to-date information that would allow addressing the information
needs described in the examples above.

The idea which underlies our work is thus to alleviate this current drawback
of the Web of Data by developing an approach that allows extracting RDF from
unstructured (i.e., textual) data streams in a fashion similar to the live versions
of the DBpedia1 and LinkedGeoData2 datasets. The main difference is yet that
instead of relying exclusively on structured data like LinkedGeoData or on semi-
structured data like DBpedia, we rely mostly on unstructured, textual data to
generate RDF. By these means, we are able to unlock some of the potential
of the document Web, of which up to 85% is unstructured [8]. To achieve this
goal, our approach, dubbed RdfLiveNews, assumes that it is given unstructured
data streams as input. These are deduplicated and then used as basis to extract
patterns for relations between known resources. The patterns are then clustered
to labeled relations which are finally used as basis for generating RDF triples.
We evaluate our approach against a sample of the RDF triples we extracted from
RSS feeds and show that we achieve a very high precision.

The remainder of this work is structured as follows: We first give an overview
of our approach and give detailed insights in the different steps from unstructured
data streams to RDF. Then, we evaluate our approach in several settings. We
then contrast our approach with the state of the art and finally conclude.

2 Overview

We implemented the general architecture of our approach dubbed RdfLiveNews
according to the pipeline depicted in Figure 1. First, we gather textual data
from data streams by using RSS feeds of news articles. Our approach can yet be
employed on any unstructured data published by a stream. Since input streams
from the Web can be highly redundant (i.e., convey the same information), we
then deduplicate the set of streams gathered by our approach. Subsequently,
we apply a pattern search to find lexical patterns for relations expressed in
the text. After a refinement step with background knowledge, we finally cluster
the extracted patterns according to their semantic similarity and transform this
information into RDF.

2.1 Data Acquisition

Formally, our approach aims to process the output of unstructured data sources
Si by continuously gathering the data streams Di that they generate. Each data
stream consists of atomic elements dij (in our case sentences). Let Di

[t,t+d] be the
portion of Di that was emitted by Si between the times t and t + d. The data
1 http://live.dbpedia.org/sparql
2 http://live.linkedgeodata.org/sparql



Fig. 1. Overview of the generic time slice-based stream processing.

gathering begins by iteratively gathering the elements of the streams Di
[t,t+d].

from all available sources Si for a period of time d, which we call the time
slice duration. For example, this could mean crawling a set of RSS feeds for a
duration of 2 hours. We call Di

[t,t+d] a slice of Di. We will assume that we begin
this process at t = 0, thus leading to slices Di

[k.d,(k+1).d] with k ∈ N. The data
gathered from all sources during a time slice duration is called a time slice. We
apply sentence splitting on all slices to generated their elements.

2.2 Deduplication

The aim of the deduplication step is to remove very similar elements from slices
before the RDF extraction. This removal accounts for some Web data streams
simply repeating the content of one of several other streams. Our deduplica-
tion approach is based on measuring the similarity of single elements si and
sj found in unstructured streams. Elements of streams are considered to be
different iff qgrams(si, sj) < θ, where θ ∈ [0, 1] is a similarity threshold and
qgrams(si, sj) measures the similarity of two strings by computing the Jaccard
similarity of the trigrams they contain. Given that the number of stream items
to deduplicate can be very large, we implemented the following two-step ap-
proach: For each slice Di

[k.d,(k+1)d], we first deduplicate the elements sij within
Di

[k.d,(k+1)d]. This results in a duplicate-free data stream ∆i
[k.d,(k+1)d] = {d

i
j :

(dij ∈ Di
[k.d,(k+1)d]) ∧ (∀sik ∈ Di

[k.d,(k+1)d] ∃d
i
j ∈ ∆i

[k.d,(k+1)d] qgrams(s
i
k, d

i
j) ≥

θ) ∧ (∀dij , dik ∈ ∆i
[k.d,(k+1)d] qgrams(d

i
k, d

i
j) < θ)}. The elements of ∆i

[k.d,(k+1)d]

are then compared to all other elements of the w previous deduplicated streams
∆i

[(k−1).d,kd] to ∆
i
[(k−w).d,(k−w+1)d], where w is the size of the deduplication win-

dow. Only ∆i
[k.d,(k+1)d] is used for further processing. To ensure the scalability

of the deduplication step, we are using deduplication algorithms implemented in



the LIMES framework [18]. Table 2 gives an overview of the number of unique
data stream items in our dataset when using different deduplication thresholds.

2.3 Pattern Search and Filtering

In order to find patterns we first apply Named Entity Recognition (NER) and
Part of Speech (POS) tagging on the deduplicated sentences. RdfLiveNews can
use two different ways to extract patterns from annotated text. The POS tag
method uses NNP and NNPS3 tagged tokens to identify a relation’s subject
and object, whereas the Named Entity Tag method relies on Person, Location,
Organization and Miscellaneous tagged tokens. In an intermediate step all con-
secutive POS and NER tags are merged. An unrefined RdfLiveNews pattern p is
now defined as a pair p = (θ,Sθ), where θ is the natural language representation
(NLR) of p and Sθ = {(si, oi) : i ∈ N; 1 ≤ i ≤ n} is the support set of θ, a set of
the subject and object pairs. For example the sentence:

David/NNP hired/VBD John/NNP ,/, former/JJ manager/NN of/IN ABC/NNP ./.

would result in the patterns:

p1 = ( [hired], {(David, John)} and
p2 = ([, former manager of ], {(John, ABC)}).

After the initial pattern acquisition step, we filter all patterns to improve their
quality. We discarded all patterns that did not match these criteria: The pattern
should (1) contain at least a verb or a noun, (2) contain at least one salient
word (i.e. a word that is not a stop word), (3) not contain more than one non-
alpha-numerical character (except ", ’ ‘") and (4) be shorter than 50 characters.
Since the resulting list still contains patterns of low quality, we first sort it by
the number of elements of the support set Sθ and solely select the top 1% for
pattern refinement to ensure high quality.

2.4 Pattern Refinement

The goal of this step is to find a suitable rdfs:range and rdfs:domain as well
as to disambiguate the support set of a given pattern. To achieve this goal we
first try to find an URI for the subjects and objects in the support set of p by
matching the pairs to entries in a knowledge base. With the help of those URIs
we can query the knowledge base for the classes (rdf:type) of the given resources
and compute a common rdfs:domain for the subjects of p and rdfs:range for
the objects respectively. A refined RdfLiveNews pattern pr is now defined as a
quadruple pr = (θ,Sθ ′, δ, ρ), where θ is the natural language representation, Sθ ′
the disambiguated support set, δ the rdfs:domain and ρ the rdfs:range of pr.

To find the URIs of each subject-object pair (s, o) ∈ Sθ we first try to com-
plete the entity name. This step is necessary and beneficial because entities
usually get only written once in full per article. For example the newly elected

3 All POS tags can be found in the Penn Treebank Tagset.



president of the United States of America might be referenced as “President
Barack Obama” in the first sentence of a news entry and subsequently be re-
ferred to as “Obama”. In order to find the subjects’ or objects’ full name, we
first select all named entities e ∈ Ea of the article the pair (s, o) was found in.
We then use the longest matching substring between s (or o) and all elements of
Ea as the name of s or o respectively. Additionally we can filter the elements of
Ea to contain only certain NER types. Once the complete names of the entities
are found, we can use them to generate a list of URI candidates Curi. This list
is generated with the help of a query for the given entity name on a list of sur-
face forms (e.g. “U.S.” or “USA” for the United States of America), which was
compiled by analyzing the redirect and disambiguation links from Wikipedia as
presented in [14]. Each URI candidate c ∈ Curi is now evaluated on four dif-
ferent features and the combined score of those features is used to rank the
candidates and choose the most probable URI for an entity. The first feature is
the Apriori -score a(c) of the URI candidate c, which is calculated beforehand
for all URIs in the knowledge base by analyzing the number of inbound links of
c by the following formula: a(c) = log(inbound(c) + 1). The second and third
features are based on the context information found in the Wikipedia article of
c and the news article text (s, o) was found in. For the global context-score cg we
apply a co-occurrence analysis of the entities Ea found in the news article and
the entities Ew found in the Wikipedia article of c. The global context-score is
now computed as cg(Ea, Ew) = |Ea ∩ Ew| / |Ea ∪ Ew|. The local context-score cl is
the number of mentions of the second element of the pair (s, o), o in the case of
s and vice versa, in Ew. The last feature to determine a URI for an entity is the
maximum string similarity sts between s (or o) and the elements of the list of
surface forms of c. We used the qgram distance4 as the string similarity metric.
We normalize all non-[0, 1] features (cg, cl, a) by applying a minimum-maximum
normalization of the corresponding scores for Curi and multiply it with a weight
parameter which leads to the overall URI score:

c(s, o, uri) =

αa

amax
+

βcg
cgmax

+
γcl
clmax

+ δsts

4

If the URI’s score is above a certain threshold λ ∈ [0, 1] we use it as the URI for
s, otherwise we create a new URI. Once we have computed the URIs for all pairs
(s, o) ∈ Sθ we determine the most likely domain and range for pr. This is done
by analyzing the rdf:type statements returned for each subject or object in Sθ
from a background knowledge base. Since the DBpedia ontology is designed in
such a way, that classes do only have one super-class, we can easily analyze its
hierarchy. We implemented two different determination strategies for analyzing
the class hierarchy. The first strategy, dubbed “most general”, selects the highest
class in the hierarchy for each subject (or object) and uses the most occurring
class as domain or range of pr. The second strategy, dubbed “most specific”,

4 http://sourceforge.net/projects/simmetrics/



works similar to the “most general” strategy with the difference that it uses the
most descriptive class to select the domain and range of pr.

2.5 Pattern Similarity and Clustering

In order to cluster patterns according to their meaning, we created a set of
similarity measures. A similarity measure takes two patterns p1 and p2 as input
and outputs the similarity value s(p1, p2) ∈ [0, 1]. As a baseline we implemented
a qgram measure, which calculates the string similarity between all non stop
words of two patterns. Since this baseline measure fails to return a high similarity
for semantically related, but not textually similar patterns like “’s attorney ,”
and “’s lawyer ,” we also implemented a Wordnet measure. As a first step the
Wordnet similarity measure filters out the stop words of p1 and p2 and applies
the Stanford lemmatizer on the remaining tokens. Subsequently, for all token
combinations of p1 and p2, we apply a Wordnet Similarity metric (Path [20],
Lin [13] and Wu & Palmer [25]) and select the maximum of all comparisons as
the similarity value s(p1, p2). As a final similarity measure we created a Wordnet
and string similarity measure with the help of a linear combination from the
before-mentioned metrics. In this step we also utilize the domain and range of
pr. If this feature is enabled, a similarity value between two patterns p1 and p2
can only be above 0, iff {δp1 , ρp1} \ {δp2 , ρp2} = ∅.

The result of the similarity computation can be regarded as a similarity
graph G = (V,E, ω), where the vertices are patterns and the weight ω(p1, p2) of
the edge between two patterns is the similarity of these patterns. Consequently,
unsupervised machine learning and in particular graph clustering is a viable way
of finding groups of patterns that convey similar meaning. We opted for using
the BorderFlow clustering algorithm [19] as it is parameter-free and has already
been used successfully in diverse applications including clustering protein-protein
interaction data and queries for SPARQL benchmark creation [15]. For each node
v ∈ V , the algorithm begins with an initial cluster X containing only v. Then,
it expands X iteratively by adding nodes from the direct neighborhood of X
to X until X is node-maximal with respect to the border flow ratio described
in [15]. The same procedure is repeated over all nodes. As different nodes can
lead to the same cluster, identical clusters (i.e., clusters containing exactly the
same nodes) that resulted from different nodes are subsequently collapsed to one
cluster. The set of collapsed clusters and the mapping between each cluster and
the nodes that led to it are returned as result.

2.6 Cluster Labeling and Merging

Based on the clusters C obtained through the clustering algorithm, this step
selects descriptive labels for each cluster ci ∈ C, which can afterwards be used to
merge the clusters. In the current version, we apply a straightforward majority
voting algorithm, i.e. for each cluster ci, we select the most frequent natural
language representation θ (stop words removed) occurring in the patterns of ci.
Finally, we use the representative label of the clusters to merge them using a



string similarity and WordNet based similarity measure. This merging procedure
can be applied repeatedly to further reduce the number of clusters, but taking
into account that those similarity measures are not transitive, we are currently
only running it once, as we’re more focused on accuracy.

2.7 Mapping to RDF and Publication on the Web of Data

To close the circle of the round-trip pipeline of RdfLiveNews, the following pre-
requisite steps are required to re-publish the extraction results in a sensible way:

1. The facts and properties contained in the internal data structure of our tool
have to be mapped to OWL.

2. Besides the extracted factual information several other aspects and meta
data are interesting as well, such as extraction and publication data and
provenance links to the text the facts were extracted from.

3. URIs need to be minted to provide the extracted triples as linked data.

Mapping to OWL. Each cluster ci ∈ C represents an owl:ObjectProperty
propci . The rdfs:domain and rdfs:range of propci is determined by a majority vot-
ing algorithm with respect to δ and ρ of all pr ∈ C. The skos:prefLabel5 of propci
is the label determined by the cluster labeling step and all other NLRs of the pat-
terns in ci get associated with propci as skos:altLabels. For each subject-object
pair in Sθ ′ we produce a triple by using propci as predicate and by assigning
learned entity types from DBpedia or owl:Thing.

Provenance tracking with NIF. Besides converting the extracted facts
from the text, we are using the current draft of the NLP Interchange Format
(NIF) Core ontology6 to serialize the following information in RDF: the sentence
the triple was extracted from, the extraction date of the triple, the link to the
source URL of the data stream item and the publication date of the item on the
stream. Furthermore, NIF allows us to link each element of the extracted triple
to its origin in the text for further reference and querying.

NIF is an RDF/OWL based format to achieve interoperability between lan-
guage tools, annotation and resources. NIF offers several URI schemes to create
URIs for strings, which can then be used as subjects for annotation. We employ
the NIF URI scheme, which is grounded on URI fragment identifiers for text
(RFC 51477). NIF was previously used by NERD [21] to link entities to text.
For our use case, we extended NIF in two ways: (1) we added the ability to rep-
resent extracted triples via the ITS 2.0 / RDF Ontology8. itsrdf:taPropRef is an
owl:AnnotationProperty that links the NIF String URI to the owl:ObjectProperty
by RdfLiveNews. The three links from the NIF String URIs (str1, str2, str3) to
the extracted triple (s, p, o) itself make it well traceable and queryable: str1
7→ s, str2 7→ p, str3 7→ o, s 7→ p 7→ o . An example of NIF RDF serialization
is shown in Listing 1. (2) Although [21] already suggested the minting of new
5 http://www.w3.org/2004/02/skos/
6 http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#
7 http://tools.ietf.org/html/rfc5147
8 http://www.w3.org/2005/11/its/rdf#



URIs, a concrete method for doing so was not yet researched. In RdfLiveNews
we use the source URL of the data stream item to re-publish the facts for in-
dividual sentences as linked data. We strip the scheme component (http://) of
the source URL and percent encode the ultimate part of the path and the query
component9 and add the md5 encoded sentence to produce the following URI:

http://rdflivenews.aksw.org/extraction/ + example.com:8042/over/ +
urlencode(there?name=ferret) + / + md5(‘sentence‘)

1 @base <http :// rdflivenews.aksw.org/extraction/www.necn.com /07/04/12/
Scientists -discover -new -subatomic -partic/landing.html%3 FblockID
%3 D735470 %26 feedID %3 D4213/8 a1e5928f6815c99b9d2ce613cf24198 #>.

2 ## prefixes: please use http :// prefix.cc, e.g. http :// prefix.cc/rlno
3 ## extracted property + result of linking
4 rlno:directorOf a owl:ObjectProperty ;
5 skos:prefLabel "director of" , skos:altLabel ", director of " ;
6 owl:equivalentProperty dbp:director .
7 ## extracted facts:
8 rlnr:Rolf_Heuer a dbo:Person ;
9 rdfs:label "Rolf Heuer"@en ;

10 rlno:directorOf dbpedia:CERN .
11 dbpedia:CERN a owl:Thing ;
12 rdfs:label "CERN"@en .
13 ## provenance tracking with NIF:
14 <char=0,10> itsrdf:taClassRef dbo:Person ;
15 itsrdf:taIdentRef rlnr:Rolf_Heuer .
16 <char =14,18> itsrdf:taIdentRef dbpedia:CERN .
17 <char =11,24> nif:anchorOf ", director of"^^xsd:string ;
18 itsrdf:taPropRef rlno:directorOf .
19 ## detailed NIF output with context , indices and anchorOf
20 <char=0,> a nif:String , nif:Context , nif:RFC5147String ;
21 nif:isString "Rolf Heuer , director of CERN , said the newly

discovered particle is a boson , but he stopped just shy of
claiming outright that it is the Higgs boson itself - an
extremely fine distinction." ;

22 nif:sourceUrl <http :// www.necn.com /07/04/12/ Scientists -discover -
new -subatomic -partic/landing.html?blockID =735470& feedID =4213 >;

23 ## extraction date:
24 dcterms:created "2013 -05 -09 T18 :27:08+02:00"^^xsd:dateTime .
25 ## publishing date:
26 <http :// www.necn.com /07/04/12/ Scientists -discover -new -subatomic -

partic/landing.html?blockID =735470& feedID =4213>
27 dcterms:created "2012 -08 -15 T14 :48:47+02:00"^^xsd:dateTime .
28 <char=0,10> a nif:String , nif:RFC5147String ;
29 nif:referenceContext <char=0,>; nif:anchorOf "Rolf Heuer" ;
30 nif:beginIndex "0"^^xsd:long ; nif:endIndex "10"^^xsd:long ;

Listing 1. Example RDF extraction of RdfLiveNews

Republication of RDF. The extracted triples are hosted on: http://
rdflivenews.aksw.org. The data for individual sentences is crawlable via the
file system of the Apache2 web server. We assume that source URLs only oc-
cur once in a stream when the document is published and the files will not be
overwritten. Furthermore, the extracted properties and entities are available as
linked data at http://rdflivenews.aksw.org/{ontology|resource}/$name and they
can be queried via SPARQL at http://rdflivenews.aksw.org/sparql.

9 http://tools.ietf.org/html/rfc3986#section-3



2.8 Linking

The approach described above generates a set of properties with several labels.
In our effort to integrate this data source into the Linked Open Data Cloud,
we use the deduplication approach proposed in Section 2.2 to link our set of
properties to existing knowledge bases (e.g., DBpedia). To achieve this goal, we
consider the set of properties we generated as set of source instances S while
the properties of the knowledge base to which we link are considered to be a set
of target T . Two properties s ∈ S and t ∈ T are linked iff trigrams(s, t) ≥ θp,
where θp ∈ [0, 1] is the property similarity threshold.

3 Evaluation

The aim of our evaluation was to answer four questions. First, we aimed at
testing how well RdfLiveNews is able to disambiguate found entities. Our sec-
ond goal was to determine if the proposed similarity measures can be used to
cluster patterns with respect to their semantic similarity. Third, we wanted to
evaluate the quality of the RDF extraction and linking. Finally, we wanted to
measure if all computational heavy tasks can be applied in real-time, meaning
the processing of one iteration takes less time than its compilation.

For this evaluation we used a list of 1457 RSS feeds as compiled in [10].
This list includes all major worldwide newspapers and a wide range of topics,
e.g. World, U.S., Business, Science etc. We crawled this list for 76 hours, which
resulted in a corpus, dubbed 100% of 38 time slices of 2 hours and 11.7 million
sentences. The average number of sentences per feed entry is approximately 26.5
and there are 3445 articles on average per time slice. Additionally we created
two subsets of this corpus by randomly selecting 1% and 10% of the contained
sentences. All evaluations were carried out on a MacBook Pro with a quad-core
Intel Core i7 (2GHz), a solid state drive and 16 GB of RAM.

3.1 URI Disambiguation

To evaluate the URI disambiguation we created a gold standard manually. We
took the 1% corpus, applied deduplication with a window size of 40 (contains
all time slices) and a threshold of 1 (identical sentences), which resulted in a
set of 69884 unique sentences. On those sentences we performed the pattern
extraction with part of speech tagging as well as filtering. In total we found
16886 patterns and selected the Top 1%, which have been found by 1729 entity
pairs. For 473 of those entity pairs we manually selected a URI for subject and
object. This resulted in an almost equally distributed gold standard with 456
DBpedia and 478 RdfLiveNews URIs. We implemented a hill climbing approach
with random initialization to optimize the parameters (see Section 2.4). The
precision of our approach is the ratio between correctly found URIs for subject
and object to the number of URIs above the threshold λ as shown in Equation 1.
The recall, shown in Equation 2, is determined by the ratio between the number



of correct subject and object URIs and the total number of subjects and objects
in the gold standard. The F1 measure is determined as usual by: F1 = 2 ·
P ·R
P+R . We optimized our approach for precision since we can compensate a lower
recall and could achieve a precision of 85.01% where the recall is 40.69% and
the resulting F1 is 55.03%. The parameters obtained through the hill-climbing
search indicate that the Apriori -score is the most influential parameter (1.0),
followed by string-similarity (0.78), local-context (0.6), global context (0.45) and
a URI score threshold of 0.61. If we optimize for F1, we were able to achieve a
F1 measure of 66.49% with a precision of 67.03% and a recall of 65.95%.

For 487 out of the 934 URI in the gold standard no confident enough URI
could be found. The most problems occured for DBpedia URIs which could
not be determined in 305 cases, in comparison to 182 URIs for newly created
resources. Additionally, for 30 resources RdfLiveNews created new URIs where
DBpedia URIs should be used and in 0 cases a DBpedia URI was used where a
new resource should be created. The reason for those mistakes are tagging errors,
erroneous spellings and missing context information. For example Wikipedia has
97 disambiguations for “John Smith” which can not be disambiguated without
prior knowledge.

We used AIDA [11] to compare our results with a state-of-the-art NED algo-
rithm. We configured AIDA with the Cocktailparty setup, which defines the rec-
ommended configuration options of AIDA. AIDA achieved an accuracy of 0.57,
i.e. 57% of the identifiable entities were correctly disambiguated. The corpus
described above provides a difficult challenge due to the small disambiguation
contexts and is limited to graphs evolving from two named entities per text.
AIDA tries to build dense sub-graphs in a greedy manner in order to perform
correct disambiguation. This algorithm would profit from a bigger number of
entities per text. The drawback is AIDA needs 2 minutes to disambiguate 25
sentences. Overall, AIDA performs well on arbitrary entities.

P =
|suric |+ |ouric |
|suri|+ |ouri|

(1) R =
|suric |+ |ouric |

2 · |GS|
(2)

3.2 Pattern Clustering

To evaluate the similarity generation as well as the clustering algorithm we relied
on the measures Sensitivity, Positive Predictive Value (PPV) and Accuracy. We
used the adaptation of those measures as presented in [4] to measure the match
between a set of pattern mappings10 from the gold standard and a clustering
result. The gold standard was created by clustering the patterns as presented in
the previous section manually. This resulted in a list of 25 clusters with more
than 1 pattern and 54 clusters with 1 pattern. Since cluster with a size of 1
would skew our evaluation into unjustified good results, we excluded them from
this evaluation.

Sensitivity. With respect to the clustering gold standard, we define sen-
sitivity as the fraction of patterns of pattern mapping i which are found in
10 A pattern mapping maps NLRs to RDF properties.



cluster j. In Sni,j = Ti,j/Ni, Ni is the number of patterns belonging to pattern
mapping i. We also calculate a pattern mapping-wise sensitivity Snpmi

as the
maximal fraction of patterns of pattern mapping i assigned to the same cluster.
Snpmi

= maxmj=1Sni,j reflects the coverage of pattern mapping i by its best-
matching cluster. To characterize the general sensitivity of a clustering result,
we compute a clustering-wise sensitivity as the weighted average of Snpmi over
all pattern mappings: Sn =

∑n
i=1NiSnpmi∑n

i=1Ni
.

Positive Predictive Value. The positive predictive value is the proportion
of members of cluster j which belong to pattern mapping i, relative to the total
number of members of this cluster assigned to all pattern mappings. PPVi,j =
Ti,j/

∑n
i=1 Ti,j = Ti,j/T.j

T.j is the sum of column j. We also calculate a cluster-wise positive predictive
value PPVclj , which represents the maximal fraction of patterns of cluster j
found in the same annotated pattern mapping. PPVclj = maxni=1PPVi,j reflects
the reliability with which cluster j predicts that a pattern belongs to its best-
matching pattern mapping. To characterize the general PPV of a clustering
result as a whole, we compute a clustering-wise PPV as the weighted average of
PPVclj over all clusters: PPV =

∑m
j=1 T.jPPVclj∑m

j=1 T.j
.

Accuracy. The geometric accuracy (Acc) indicates the tradeoff between sen-
sitivity and positive predictive value. It is obtained by computing the geometrical
mean of the Sn and the PPV : Acc =

√
Sn · PPV .

We evaluated the three similarity measures with respect to the underlying
WordNet similarity metric (see Section 2.5). Furthermore we varied the cluster-
ing similarity threshold between 0.1 and 1 with a 0.1 step size. In case of the
qgram and WordNet similarity metric we performed a grid search on the Word-
Net and qgram parameter in [0, 1] with a step size of 0.05. We achieved the best
configuration with the qgram and WordNet similarity metric with an accuracy
of 82.45%, a sensitivity of 71.17% and a positive predictive value of 95.51%.
The best WordNet metric is Lin, the clustering threshold 0.3 and the qgram
parameter is with 0.45 significantly less influential than the WordNet parameter
with 0.75. As a reference value, the plain WordNet similarity metric achieved
an accuracy of 78.86% and the qgram similarity metric an accuracy of 69.1% in
their best configuration.

3.3 RDF Extraction and Linking

To assess the quality of the RDF data extracted by RdfLiveNews, we sampled the
output of our approach and evaluated it manually. We generated five different
evaluation sets. Each set may only contain triples with properties of clusters
having at least i = 1 . . . 5 patterns. We selected 100 triples (if available) randomly
for each test set. As the results in Table 1 show, we achieve high accuracy on
subject and object disambiguation. As expected, the precision of our approach
grows with the threshold for the minimal size of clusters. This is simply due to
the smaller clusters having a higher probability of containing outliers and thus
noise.



Table 1. Accuracy of RDF Extraction
for subject (S), predicates (P) and ob-
jects (O) on 1% dataset with varying
cluster sizes Ei.

Ei 1 2 3 4 5

SAcc 0.81 0.88 0.86 0.857 0.804
PAcc 0.86 0.89 0.90 0.935 1.00
OAcc 0.93 0.91 0.90 0.948 0.941

TotalAcc 0.86 0.892 0.885 0.911 0.906
|Ei| 100 100 100 77 51

|P | ∈ |Ei| 28 22 12 6 1

Table 2. Number of non-duplicate sen-
tences in 1% of the data extracted from
1457 RSS feeds within a window of 10
time slices (2h each). The second column
shows the original number of sentences
without duplicate removal.

Time
Slice

No dedu-
plication

θ = 1.0 θ = 0.95 θ = 0.9

1 2997 2764 2764 2759
5 3047 2335 2334 2327
10 3113 2033 2040 2022
15 2927 1873 1868 1866
20 3134 1967 1966 1949
25 3065 1936 1932 1924
30 3046 1941 1940 1933

Table 3. Example for linking between RdfLiveNews and DBpedia.

RdfLiveNews-URI DBpedia-URI Sample of cluster

rlno:directorOf dbo:director [manager], [, director of], [, the director of]
rlno:spokesperson dbo:spokesperson [, a spokeswoman for], [spokesperson],

[, a spokesman for]
rlno:attorney — [’s attorney ,], [’s lawyer ,], [attorney]

The results of the linking with DBpedia (see Table 3) showed the mismatch
between the relations that occur in news and the relations designed to model
encyclopedic knowledge. While some relations such as dbo:director are used
commonly in news streams and in the Linked Data Cloud, relations with a more
volatile character such as rlno:attorney which appear frequently in news text
are not mentioned in DBpedia.

3.4 Scalability

In order to perform real-time RDF extraction, the processing of the proposed
pipeline needs to be done in less time than its acquisition requires. This also
needs to be true for a growing list of RSS feeds. Therefore, we analyzed the time
each module needed in each iteration and compared these values between the
three test corpora. An early approximation of this evaluation implied that the
pipeline indeed was not fast enough, which led to the parallelization of the pat-
tern refinement and similarity generation. The results of this evaluation can be
seen in Figure 2. With an average time slice processing time of about 20 minutes
for the 100% corpus (2.2 minutes for 10% and 30s for 1%), our approach is clearly
fit to handle up to 1500 RSS and more. The spike in the first iteration results
out of the fact that RSS feeds contain the last n previous entries, which leads to
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3013 30213 668 1150 14144 3157 71 5 44 151 1 5052 52617
8075 18393 125 154 7604 217 15 2 33 264 0 34882
2010 15869 96 123 8066 202 53 1 34 403 0 26857
2108 15235 80 97 6038 106 22 2 18 310 0 24016
2616 14417 59 72 5966 202 24 2 36 597 0 23991
3287 12926 74 92 6246 106 23 1 34 839 0 296 23628
3006 12446 92 110 5475 43 20 2 22 992 0 22208
3445 12598 82 99 7205 88 19 2 36 1363 0 24937
3915 13308 49 65 6979 68 22 2 26 864 0 25298
2777 12039 51 64 8010 100 15 2 28 1086 0 24172
3144 11889 82 98 8498 112 15 3 27 1710 0 310 25578
2859 13249 86 102 7121 382 17 3 37 1599 0 25455
2875 12608 49 63 7668 149 17 2 36 1417 0 24884
2753 11849 58 71 7700 111 12 2 23 1636 0 24215
2821 12591 65 81 8363 327 14 2 35 1682 0 25981
2945 12273 64 77 10318 356 20 4 66 2105 0 521 28228
2879 12359 72 88 9015 134 18 3 33 2611 0 27212
3740 12222 49 60 9645 139 15 2 43 1886 0 27801
2665 13454 64 82 10319 249 19 4 55 2706 0 29617
3028 12149 72 87 9794 93 19 3 40 2663 0 27948
2818 12823 102 117 10358 109 22 4 40 3133 0 354 29526
3004 16623 48 66 9169 123 22 3 39 1791 0 30888
2898 13201 60 78 9330 92 19 4 44 2208 0 27934
3086 12614 59 74 11827 142 24 2 42 2669 0 30539
2898 13757 87 104 12803 270 21 2 52 3117 0 33111
2975 12704 93 111 12335 194 25 2 51 3564 0 425 32054
3609 12486 43 61 10398 160 31 2 56 2451 0 29297
2849 13338 75 97 11404 144 25 2 53 3083 0 31070
2827 11838 78 95 11343 95 26 2 53 3266 0 29623
3030 10591 70 85 10119 105 24 2 51 3747 0 27824
2791 13006 49 66 11515 196 30 3 60 2546 0 344 30262

29,083763157895
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22955 189545 2030 2542 60322 6158 150 5 354 3361 3 10888 287425
23606 61255 575 686 37152 1099 120 6 234 6035 0 7656 130768
27099 42759 485 583 31454 600 114 7 207 8457 0 9853 111765
31773 33194 290 347 27582 458 94 4 128 8724 0 9587 102594
36943 22602 255 291 22356 523 112 5 131 9975 0 10769 93193
44701 23351 280 308 21881 386 114 5 132 11747 0 1093 102905
41802 20345 335 371 27131 535 149 6 166 15959 0 16986 106799
52404 19786 240 270 24605 397 148 5 134 12593 0 13390 110582
40390 17872 195 219 22554 476 159 7 165 13020 0 13765 95057
40229 19302 271 305 26094 576 155 5 181 14709 0 15626 101827
46805 18693 144 176 23040 557 193 4 205 11086 0 1074 100903
38380 20395 174 206 25776 532 223 4 203 14075 0 14885 99968
37742 21337 192 229 25689 654 256 3 224 16956 0 17860 103282
38333 19172 180 209 24615 519 240 4 298 17809 0 18740 101379
40045 20594 204 236 29899 553 227 3 248 20697 0 21615 112706
51441 18714 131 163 23350 471 250 3 238 12370 0 1018 107131
33858 18213 134 163 21936 466 272 2 909 14296 0 15776 90249
36208 19968 147 175 24598 387 269 2 2088 17047 0 19728 100889
38551 18376 230 260 23906 436 301 3 2627 19816 0 23237 104506
39922 22691 101 133 25281 587 336 3 3966 13271 0 17810 106291
34616 17697 132 162 24797 716 358 3 5427 15432 0 1371 99340
36357 19956 170 205 28361 3349 446 3 11473 17709 0 30006 118029
39436 19486 208 239 26296 2180 373 3 15447 20660 0 36930 124328
40480 19654 190 225 28017 2215 398 2 16425 23649 0 40889 131255
47742 19735 139 172 28813 4684 421 3 24996 16137 0 41868 142842
34804 19061 166 199 27358 3312 454 2 26983 18861 0 4133 131200
37056 18080 197 232 29992 6365 522 3 31229 21082 0 53265 144758
38671 17915 151 185 29723 5421 498 2 35378 24028 0 60242 151972
38279 23177 149 179 30586 7955 532 3 41614 18437 0 60914 160911
33701 16552 124 158 30342 4659 522 3 47178 21034 0 69019 154273
34381 19536 158 192 29675 9236 594 3 57209 23815 0 10183 174799

136,97131579
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132504 876610 6107 8846 443874 206654 2550 15 75311 23926 1 224173 1776398
179066 37225 234 323 65845 60028 2832 12 88856 29463 0 463884
225861 36388 211 286 64233 59088 2297 12 104358 36112 0 528846
279337 28155 185 269 62458 49225 2780 8 125559 44468 0 592444
359322 25589 170 228 69740 80731 3147 6 150499 54435 0 743867
457418 33452 305 479 83442 86985 3714 7 162692 65148 0 91490 893642
444627 42036 291 372 77428 103483 4446 6 172755 80422 0 925866
489591 29206 236 296 72748 74549 4906 4 196954 94373 0 962863
551765 29329 316 1218 77266 63206 5309 5 202029 110471 0 1040914
608706 47172 462 625 97132 121264 6110 5 221399 130423 0 1233298
530480 54246 544 645 104275 170717 6575 4 235323 141768 0 178485 1244577
547290 70054 495 621 95382 127710 6263 4 255673 124902 0 1228394
505472 36441 399 534 92054 163906 6893 5 283720 140576 0 1230000
488626 39319 424 517 99743 223427 7500 5 311846 158693 0 1330100
500281 58342 493 657 83734 92256 8227 6 326670 142798 0 1213464
605182 34865 282 370 71406 102149 8458 5 329428 96079 0 111264 1248224
410451 25690 232 295 73524 85789 9265 8 345129 115317 0 1065700
455233 31403 341 414 82535 134003 9424 7 361278 131614 0 1206252
480043 35468 339 421 81633 78545 9815 7 366768 151057 0 1204096
523120 100299 337 402 70795 38583 9274 6 364300 117661 0 1224777
475732 36489 342 440 74917 64261 9591 7 386621 138457 0 74641 1186857
498675 48204 503 602 91148 136977 10532 8 409944 157741 0 1354334
538807 42565 514 608 93656 95265 11573 7 423426 181800 0 1388221
553678 51508 489 597 100950 110482 7633 6 433756 174697 0 1433796
500971 36569 438 1133 92079 87478 9243 7 449303 194561 0 1371782
521383 44998 552 653 94158 63026 11625 7 451574 221469 0 75863 1409445
546578 54710 497 589 84959 81663 11976 7 463344 203746 0 1448069
482271 30814 345 461 80919 42288 13562 7 475390 225213 0 1351270
520882 30925 330 411 87533 56576 13464 6 459318 240395 0 1409840
530199 35585 535 663 96738 83614 14032 7 462783 266089 0 1490245
748367 55254 548 1387 84275 50216 14690 328 475075 289745 0 67169 1719885

1191,0112903226
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Fig. 2. Runtimes for different components and corpora (1% left, 10% middle, 100%
right) per iteration.

a disproportional large first time slice. The most time consuming modules are
the deduplication, tagging and cluster merging. To tackle these bottlenecks we
can for example parallelize sentence tagging and the deduplication.

The results of the growth evaluation for patterns until iteration 30 can be
seen in Figure 3. The number of patterns grows with the factor of 3 from 1%
to 10% and 10% to 100% corpora. Also, the number of patterns found by more
than one subject-object pair increases approximately by factor 2. Additionally
we observed a linear growth for all patterns (also for patterns with |S ′θ| > 1) and
100% showing the highest growth rate with a factor 2.5 over 10% and 4.8 over
10%.
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Fig. 3. Number of patterns (log scale) and
patterns with |S ′

θ| > 1 (Patterns+) for it-
erations and test corpus.
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Fig. 4. Number of clusters (log scale) and
clusters with |C| > 1 (Cluster+) for itera-
tions and test corpus.

The results of the growth evaluation for clusters can be seen in Figure 4. The
evaluation shows that the number of clusters increases by a factor of 2.5 from
1% to 10% and 10% to 100%. Moreover, approximately 25% of all cluster have



more than 1 pattern and the number of clusters grows linear for 1% and 10%
but for the 100% corpus it seems to coverage to 800. The same holds true for
clusters with more then one pattern, as they stop to grow at around 225 clusters.

4 Related Work

While Semantic Web applications rely on formal, machine understandable lan-
guages such as RDF and OWL, enabling powerful features such as reasoning and
expressive querying, humans use Natural Language (NL) to express semantics.
This gap between the two different languages has been filled by Information Ex-
traction (IE) approaches, developed by the Natural Language Processing (NLP)
research community [23], whose goal is to find desired pieces of information, such
as concepts (hierarchy of terms which are used to point to shared definitions),
entities (name, numeric expression, date) and facts in natural language texts
and print them in a form that is suitable for automatic querying and processing.
Ever since the advent of the Linked Open Data initiative11, IE is also an impor-
tant key enabler for the Semantic Web. For example, LODifier ([2], [6]) combines
deep semantic analysis with named entity recognition, word-sense disambigua-
tion and controlled Semantic Web vocabularies. FOX [17] uses ensemble learning
to improve the F-score of IE tools. The BOA framework [9] uses structured data
as background knowledge for the extraction of natural language patterns, which
are subsequently employed to extract additional RDF data from natural lan-
guage text. The authors of [16] propose a simple model for fact extraction in
real-time taking into account the difficult challenges that timely fact extraction
on frequently updated data entails. A specific application for the news domain
is described in [24], wherein a knowledge base of entities for the French news
agency AFP is populated.

State-of-the-art open-IE systems such as ReVerb automatically identify and
extract relationships from text, relying on (in the case of ReVerb) simple syn-
tactic constraints expressed by verbs [7]. The authors of [5] present a novel
pattern clusters method for nominal relationship classification using an unsu-
pervised learning environment, which makes the system domain and language-
independent. [22] shows how lexical patterns and semantic relationships can be
learned from concepts in Wikipedia.

5 Conclusion and Future Work

In this paper, we presented RdfLiveNews, a framework for the extraction of
RDF from unstructured data streams. We presented the components of the Rd-
fLiveNews framework and evaluated its disambiguation, clustering, linking and
scalability capabilities as well as its extraction quality. We are able to disam-
biguate resources with a precision of 85%, cluster patterns with an accuracy of
82.5% and extract RDF with an total accuracy of around 90% and handle two
11 http://linkeddata.org/



hour time slices with around 300.000 sentences within 20 min on a small server.
In future work, we will extend our approach to also cover datatype properties.
For example from the sentence “. . . , Google said Motorola Mobility contributed
revenue of US$ 1.25 billion for the second quarter.” the triple dbpedia:Google
rlno:says “Motorola Mobility contributed revenue of US$ 1.25 billion for the sec-
ond quarter” can be extracted. Additionally we plan to integrate DeFacto [12],
which is able to verify or falsify a triple extracted by RdfLiveNews. Finally, we
will extend our approach with temporal logics to explicate the temporal scope
of the triples included in our knowledge base.
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