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Abstract. Though subgraph matching has been extensively studied as
a query paradigm in semantic web and social network data environments,
a user can get a large number of answers in response to a query. Just like
Google does, these answers can be shown to the user in accordance with
an importance ranking. In this paper, we present scalable algorithms to
find the top-K answers to a practically important subset of SPARQL-
queries, denoted as importance queries, via a suite of pruning techniques.
We test our algorithms on multiple real-world graph data sets, showing
that our algorithms are efficient even on networks with up to 6M vertices
and 15M edges and far more efficient than popular triple stores.

1 Introduction

Facebook recently introduced a new feature called “graph search”1 that enables
users to search Facebook’s social graph. This graph contains entities like persons,
media items, companies, events, and associated data of these entities like name
or age. For example, users can search for cities that friends of their parents
like or restaurants their friends have been to. Such queries are a special case of
SPARQL queries and of the class of subgraph matching queries (for the first
example the pattern is the path graph user ↔ parent ↔ friend ↔ city) with
additional constraints on the vertex properties.

In this paper, we go beyond subgraph matching and consider the case of
subgraph queries augmented with “importance” metrics that are specified by
the user in his query. Such queries can be easily expressed in SPARQL using
FILTER and ORDER BY clauses. In classical subgraph queries, the user specifies
a query subgraph – and all matches of that subgraph with subgraphs of the
graph database are considered equally important. However, when the nodes in
the graph have associated semantic labels, then there are cases where the user
may specify an importance measure that marks some matches as being “more
important” than others.

1 https://www.facebook.com/about/graphsearch
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A query for restaurants a person’s friends have been to can return hundreds
or thousands of answers, as many Facebook users have hundreds of friends.
However, users will prefer a short list of the most relevant restaurants. We want
to provide users a tool to find the most relevant answers from their perspective.
An importance query is an extended subgraph query with a scoring mechanism,
and as such they are a subset of SPARQL queries. With importance queries
users can, e.g. search for restaurants with the highest star ranking their friends
like or the largest cities friends of the parents have been to.

Figure 1 shows a Facebook-style graph with four types of edges (friend of,
resident of, located in, likes). Each vertex in this graph has different kinds of
properties such as the type of the vertex (person, restaurant, city), the age and
gender of persons, and the star rating of restaurants. A possible query on this
graph is: Which are the restaurants with the highest star ranking in London that
my friends who live in London like?
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Fig. 1: Example of a data graph.

Our technical solution for finding the most important pattern matches in
a graph is based on classic subgraph matching algorithms rather than join-
based techniques for RDF database engines. Especially because of expensive join
operations, finding patterns in large graph-structured datasets stored as triples
is inefficient [16]. Our experimental evaluation compares the newly developed
algorithms to RDF triples stores, and shows that our algorithms beat them on
importance queries.

An important point to note is that in this paper we only consider anchored
queries, i.e. subgraph queries where we already know the mapping for at least
one of the vertices in the query. This is often a more realistic problem set-
ting compared to arbitrary, non-anchored queries, because people usually create
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searches with themselves as an anchor (queries containing terms like my friends,
my company, cities I like).

In this paper we extend the subgraph matching problem and try to find the
most important matches (according to a user provided definition) in attributed
graphs (i.e. graphs with edge labels and where vertices may have associated
properties). We make the following contributions.

– First, we formally define importance queries and define answers (and the
top-k answers) to such queries (Section 2).

– We then define a simple baseline algorithm to solve such queries, followed by
our more sophisticated OptIQ algorithm that can efficiently prune part of the
search space and scale our top-k algorithms to find answers to importance
queries (Sections 3 and 4).

– We present the results of experiments to analyze the influence of query prop-
erties on the performance of query algorithms (Section 5). Our experiments
– on CiteSeerX, YouTube, Flickr and GovTrack data, show that our algo-
rithms scale well to data sets containing up to 6.2M vertices and 15.2M
edges. We also show that popular triple stores are much slower in answering
importance queries.

2 Importance Queries on Graphs

In this section, we formalize the concept of importance queries – the query type
we developed fast answering algorithms for. We use the following notation in this
paper. R denotes the set of all non-negative real numbers. VP, EP, and VAR are
arbitrary but fixed mutually disjoint sets of symbols for vertex predicates, edge
labels and variables, respectively. Variable symbols start with a “?” (e.g. ?x).
Every vertex predicate p ∈ VP has a domain dom(p) which is some set disjoint
from each of VP,EP,VAR.

Definition 1 (Graph Database). A graph database (GDB) is a triple G =
(V,E, ℘) with V a finite set of vertices, E ⊆ V × EP× V a finite set of labeled
edges and ℘ : V × VP →

⋃
p∈VP dom(p) a property function. We assume that

for all v ∈ V, p ∈ VP, ℘(v, p) ∈ dom(p).

VG , EG , ℘G denote the vertices, edges, and property functions of a GDB G.
Throughout this paper, we assume that G = (V,E, ℘) is an arbitrary but fixed
graph. Figure 1 shows a sample of such a GDB.

Definition 2 (Term; Numeric Term). (i) Every member of
⋃

p∈VP dom(p)
is a term. If nt ∈

⋃
p∈VP dom(p) ∩ R, then nt is a numeric term.

(ii) If ?x ∈ VAR and p ∈ VP, then ?x.p is a term. If dom(p) ⊆ R, then ?x.p is a
numeric term.
(iii) If nt1, nt2 are numeric terms, then nt1 + nt2 and nt1 ∗ nt2 are numeric
terms.
A term is ground if no variables occur in it. We say a term t is solely about
variable ?x if ?x is the only variable occurring in t.
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The importance query (definition follows) shown in Figure 2 contains the numeric
term ?r.stars. We assume that all ground numeric terms are evaluated, e.g. the
numeric term 2 + 3 is evaluated to 5.

Definition 3 (Constraint). (i) If t1, t2 are terms, then t1 = t2 and t1 6= t2
are constraints.
(ii) If nt1, nt2 are numeric terms, then nt1 < nt2, nt1 ≤ nt2, nt1 > nt2, nt1 ≥ nt2
are constraints.
(iii) If c1, c2 are constraints, then c1 ∧ c2 is a constraint.
We say constraint C is solely about variable ?x if ?x is the only variable occur-
ring in C.

The example importance query in Figure 2 contains for variable ?r the constraint
?r.type = restaurant.

Definition 4 (Importance Query). An importance query is a 4-tuple PQ =
(SQ,χ, %, agg) where:

1. SQ is a pair SQ = (QV,QE) where QV ⊆ V ∪ VAR and QE ⊆ (V ∪
VAR,EP, V ∪ VAR). Because V and VAR are finite sets, QV and QE are
finite sets as well. SQ is called a subgraph query.

2. χ associates a constraint that is solely about ?x with each variable ?x ∈
QV ∩ VAR.2

3. % is a partial function from QV ∩ V AR to numeric terms s.t. there is at least
one ?x ∈ QV ∩ V AR which is mapped to a numeric term with ?x occurring
in it.

4. agg is one of four aggregation function MIN, MAX, SUM or AVG.3

Suppose SQ = (QV,QE) is a subgraph query. A substitution is a mapping
θ : QV ∩ VAR→ V . Thus, substitutions assign vertices in a GDB G to variables
in QV . The application of a substitution θ to a term t, denoted tθ, is the result
of replacing all variables ?x in t by θ(?x). When t contains no variables, then
tθ = t.

If we consider the sample query Q shown in Figure 2, it has two answers
w.r.t. the graph database shown in Figure 1:

θ1 ≡ ?p = Steve, ?r = AsiaBistro

θ2 ≡ ?p = Paul, ?r = SteakHouse

Definition 5 (Answer; Answer Value). Suppose G is a GDB, PQ =
(SQ,χ, %, agg) is an importance query, and θ is a substitution w.r.t. SQ. θ is an
answer of PQ w.r.t. G if:

2 If we do not wish to associate a constraint with a particular variable ?x, then χ(?x)
can simply be set to a tautologous constraint like 2 = 2.

3 These functions map multisets of reals to the reals and are defined in the usual way.
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Fig. 2: Example of an importance query described by a subgraph query, con-
straints (italic) and an IQ-term (gray box).

(i) for every edge (v1, ep, v2) ∈ QE, it is the case that (v1θ, ep, v2θ) ∈ E and
(ii) for each vertex ?x ∈ QV ∩ VAR, the constraint χ(?x)θ is true.

The answer value of a substitution θ, denoted Aval(θ, PQ,G) =
agg({(%(?x))θ | ?x ∈ dom(%)}). When the set on the right hand side is empty,
Aval(θ, PQ,G) = 0.

We use ANS(PQ,G) to denote the set of all answers of importance query PQ
w.r.t. GDB G.

In our example % assigns the very simple IQ-term ?r.stars to the variable ?r.
So the answer value of θ1 is 3 and the answer value of θ2 is 4.

3 Baseline Best Answer Algorithm

In Section 2 we defined importance queries. Depending on the size of the data
graph and the constrained IQ-query, the number of results can be very large.
We defined the notion of importance queries as users are usually only interested
in the most important query answers. Consequently, we will discuss top-k query
answer algorithms.

A straightforward algorithm to compute the answers of an importance query
follows the definition of importance queries and first computes all subgraph query
answers, filters the set of answers to those answers that satisfy the constraints
and then computes the IQ-values. Any subgraph matching algorithm could be
used here (see Sec. 6). However, we use an implementation that considers our
specific problem situation (queries with anchors and large disk-residing graphs).
Subgraph matching algorithms are branch-and-bound algorithms that follow a
search tree. In our case, first, an anchor is selected. Then an unmapped neighbor
of an anchor or a mapped variable in the query graph gets selected, and all
candidates for this variable in the data graph are determined. For every candidate
the variable is mapped to the candidate, and the search with the next unmapped
variable is continued recursively. We only use the I/O- efficient pruning on vertex
degrees because determining vertex degrees does not require one to read extra
data. Loading index data for advanced indexes from disk usually does not pay
off.



6 Personalized Best Answer Computation in Graph Databases

Algorithm 1: Optimized Importance Query (OptIQ) Algorithm

1 Function AnswerQuery

Input: Data Graph G, Importance Query q = (SQ = (QV,QE), χ, %, agg),
partial substitution θ, result size k

Output: answered stored in global variable A: set of tuples (vertex, score)
2 if θ maps every variable to a ground term then
3 A← A ∪ {θ}
4 if |A| > k then
5 A← A \ {θ ∈ A with minimal score(θ) }

6 nextvars← {(c, ?v)|?v → c or c→?v ∈ QE} //edges with one mapped endpoint
7 foreach (c, ?v) ∈ nextvars do
8 Rc,?v ← getNeighborNum(G, c, getEdgeLabel((c, ?v)))
9 Bc,?v ← getExpBenefit(G, q, (c, ?v), θ) // for WCOST only

10 if Rc,?v = 0 then return

11 (c, ?w)← (c, ?v) ∈ nextvars with max Bc,?v // for WCOST
12 with min Rc,?v // otherwise
13 N?w ←GetValidNeighbors(G, q, (c, ?w))
14 foreach m ∈ N?w in decreasing order of score %(m) do
15 θ′ ← θ ∪ (?w → m)
16 s← calculateMaxScore (G, θ′)
17 if |A| > k and s < lowest score of any θ ∈ A then continue
18 AnswerQuery(G, qθ′,θ′,k)

19 Function GetValidNeighbors

Input: Data Graph G, query q, tuple (vertex c, variable ?w)
Output: vertices that can be mapped to ?w among all c’s neighbors

20 Function getNeighborNum

Input: Data Graph G, vertex c, edge label l
Output: The number of c’s neighbors which are connected through an edge of

the label l

21 Function getExpBenefit

Input: Data Graph G, query q, tuple (vertex c, variable ?w), partial mapping θ
Output: getExpScore (G, q, (c, ?w), θ) / getCost (G, (c, ?w))

22 Function getExpScore

Input: Data Graph G, query q, tuple (vertex c, variable ?w), partial mapping θ
Output: agg({?v ∈ QV ∩ V AR : value(?v)}), where value(?v) = %(?v)θ if θ

maps ?v, value(?v) = localAvg(?v) if all candidates for ?v are in a
known, cached subgraph of the subgraph index of G, and
value(?v) = 0 otherwise

23 Function getCost

Input: Data Graph G, tuple (vertex c, variable ?w)
Output: n logn, where n=getNeighborNum (G, (c, ?w)), i.e. sorting time in l. 14

24 Function calculateMaxScore

Input: Data Graph G, partial mapping θ
Output: agg({?v ∈ QV ∩ V AR : value(?v)}), where value(?v) = %(?v)θ if θ

maps ?v, value(?v) = localMax(?v) if all candidates for ?v are in a
known, cached subgraph of the subgraph index of G, and
value(?v) = globalMax(?v) otherwise
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4 Optimized (OptIQ) Algorithm

The baseline algorithm (Sec. 3) performs the 4 steps (1) Subgraph Matching, (2)
Constraint Checking, (3) Scoring and (4) Top-k Selection sequentially and in-
dependently. An obvious improvement is the integration of the uncoupled steps.
If we check the constraints in the subgraph matching step, then we do not have
to create a possibly large list of subgraph matches that needs to be checked for
meeting the constraints. Likewise, we can maintain a sorted list of top-k sub-
stitutions. Every time a new substitution with a score greater than the lowest
score in the top-k list has been identified, we update the list.

Algorithm 1 shows the integrated algorithm. All blue code segments are ex-
tensions to improve the performance, but are not necessary to compute answers
to IQ-queries per se. We will discuss these improvements in Sections 4.2–4.4.

Lines 2–5 check whether a complete substitution has been generated, and add
a complete substitution to the answer set if its score is among the top-k. Lines
6–10 inspect every edge of the query graph whose one end is mapped to a vertex
of the data graph and whose other end is not. In Rc,?v, we store the number
of c’s neighbors in the data graph that are connected through an edge with the
same label between c and ?v, i.e. Rc,?v is the number of candidates for ?v. In
line 11 we select the query graph edge with the lowest number of candidates.
GetValidNeighbors() returns the set of all valid vertices that can be mapped to
?w. Here, we use DOGMA’s pruning technique based on IPD values (see Section
4.1) to filter neighbors that cannot be part of a valid answer. Other pruning
strategies (see e.g. [4, 13, 14]) could be used as well. In line 14–18, we substitute
?w with each candidate m and recursively continue the assembly of answers.

Before we can discuss the performance improving techniques shown in the
blue code segments of Algorithm 1, we need to introduce our graph database
index.

4.1 Database Index

To efficiently answer importance queries on large graphs, we use a disk-based
index inspired by the DOGMA index [3]. We decompose the data graph into a
large number of small, densely connected subgraphs and store them in an index.
Our partitioning algorithm follows the multi-level graph partitioning scheme [7].
Like DOGMA, we iteratively halve the number of vertices by merging randomly
selected vertices with all of their neighbors. When the resulting graph has less
than 100 vertices, we iteratively expand the graph using the GGGP algorithm
from the METIS algorithm package [5] to bisect the graph components at each
level.4 For every block of the partition we extract the subgraph it induces from
the graph database and store it as one block of data to disk.

The objective of the DOGMA index is two-fold: (1) to increase the I/O-
efficiency by exploiting data locality – only those parts of the graph that are

4 We also conducted preliminary experiments with other partitioning algorithms but
they showed no significant difference for the query processing performance.
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necessary to answer a query have to be retrieved from disk (2) DOGMA stores
for every vertex the internal partition distance (IPD), i.e. the number of hops
from a vertex to the nearest other vertex outside the subgraph. Using the IPD, we
can quickly compute a minimum distance between vertices, and prune candidates
if their distance is higher than the distance between their respective query graph
variables.

We extend this concept and store additional information in the index for
advanced top-k pruning strategies. First, we store global maximum values for
every vertex property. Additionally, we store together with each induced sub-
graph Gs the edges that connect it to other subgraphs (inter-subgraph edges)
and aggregated information (maximum and average) of the predicate values of
the vertices in Gs and of those vertices not in Gs but adjacent to a vertex in Gs

(denoted as the boundary of Gs).

4.2 Simple Top-k Pruning on Scores

The optimized baseline algorithm does not exploit the fact that we are only
interested in the top-k answers. During the stepwise assembly of substitutions,
there will be partial substitutions which cannot make it into the top-k given
the scores of the full substitutions that are already in the answer set. If we
identify them, we can prune the respective branch of the search tree and save
computation time.

First, the set N?w should be sorted by score in line 14. I.e., if ?w is scored
by an IQ-term, N?w is sorted in decreasing order of the value of the term. This
ensures that we evaluate the most promising candidates first.

The IQ-score of a substitution is the value of the aggregation function agg
on the values assigned by the IQ-terms to the variables (see Def. 5). For a
partial substitution θ, we can compute an upper bound of its answer value Aval
by using upper bounds for %(?v)θ of all unmapped variables. That means, we
calculate an upper bound of the answer value by using the exact term score
for every previously mapped variable and upper bounds for currently unmapped
variables. This is performed by calculateMaxScore(). Our simple top-k pruning
strategy uses precomputed global upper bounds, i.e. maxx∈V ℘(x, pi), for each
vertex property pi.

When the variance of vertex property values is high, using the global upper
bound of a vertex property will not allow us to prune many branches of the
search tree. A tighter upper bound is desirable. The mappings of the partial
substitutions restrict the set of valid candidates for the currently unmapped
variables. What we need is a fast way to find tight upper bounds for vertex
property values given the mappings in the partial substitutions.

4.3 Advanced Top-k Pruning on Scores

In Section 4.2 we presented a simple top-k pruning strategy using upper bounds
for the reachable substitution scores. Using the proposed database index, we can
find tighter upper bounds that provide a higher pruning power.
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For the candidate set N?v of ?v, we can compute the upper bound for %(?v)
using maxx∈N?v

℘(x, pi). But computing the upper bound in this way would
require us to read the property scores of all vertices in N?v. This is prohibitively
expensive because of the high costs of reading from disk. However, if we store the
maximal property scores of a subgraph in the index, we can find a good upper
bound in a reasonable amount of time.

In calculateMaxScore(), we compute the upper bound of the answer value
of a partial mapping θ by computing the upper bound for each variable ?v’s %(?v)
(denoted as value()). If θ maps a variable ?v to a vertex of the data graph, we
know the exact value of %(?v)θ. For a currently unmapped ?v, we look at its
distance to already mapped variables c, dist(c, ?v). If dist(c, ?v) < IPD(c) for
some c, we know that ?v has to be mapped to the same subgraph as c. Then, we
use localMax to compute value using the local maximum values of the subgraph
of c. If dist(c, ?v) < IPD(c) + 1, we do the same but using the maximum values
of the subgraph and its boundary. However, if dist(c, ?v) > IPD(c) + 1 for all
c, we have no local information and globalMax computes value using global
maximum values.

4.4 Processing Order

The baseline algorithm iteratively selects the unmapped variable with the small-
est candidate set for processing. However, for importance queries this strategy
sometimes leads to the late discovery of top-k answers. Selecting a variable with
a higher number of candidates might not be bad when most candidates can be
pruned very early. To weigh the different objectives (low number of branches to
follow, following more promising paths first) we compute the benefit score Bc,?v

in line 9 and process candidates in decreasing order of their benefits. We define
the benefit of substituting a variable ?w with n candidates in a partial substi-
tution θ′ as wexp(θ′)/f(n), where f(n) is the cost to process n candidates and
wexp(θ′) is the expected score of θ′. In Algorithm 1, getExpBenefit() calculates
this score.

As in the case of computing upper bounds for substitution scores for pruning
(Section 4.3), we compute wexp(θ′) with the precomputed property scores of
subgraphs. But additionally we weigh the expected term scores using the inde-
gree of a candidate. The indegree is a simple heuristic for the probability that
the variable will be mapped to a vertex. As I/O-efficiency is the primary problem
of our algorithm, we use only information already read from disk to determine
the expected score. Unavailable vertex property score estimates are replaced by
0.

To compute the expected value we proceed as follows. We classify unmapped
variables in the query graph in two groups.

– If a variable ?v has no vertex c whose hop(?v, c) is less than or equal to c’s
IPD value, we assume the property scores are 0 (or ∞ if the MIN aggre-
gation is used). Computing an expected value would require reading many
additional disk pages (which we want to avoid) or using global averages. But
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underestimating the real expected score is in this case favorable because it
puts variables whose mapping requires additional disk access at the end of
the priority list.

– Otherwise, we use the weight expected value of the subgraph c is residing
in. We know that all query variables whose distance from c is less than or
equal to c’s IPD value will be mapped in the same subgraph. So, we can use
the precomputed weighted average property values of the subgraph as the
expected value.

5 Experiments

In the following, we present an evaluation of the previously introduced top-
k algorithms. We conducted experiments with 5 algorithm variants: the non-
integrated baseline algorithm Base, the optimized importance query (OptIQ),
the extension of OptIQ by simple top-k pruning (GMax), the extension of OptIQ
by advanced top-k pruning (LMax), and the extension of LMax by the improved
processing order (WCOST).

To see how our algorithms perform in relation to triple stores, we ran addi-
tional experiments using Apache Jena TDB 2.10.0 [1] and OWLIM-SE 5.3.5925
[8]. We considered using RDF-3x [10] as well, but had to omit RDF-3x because
it cannot answer queries with cross-products because of a bug that still exists in
the latest release. Importance queries can be easily written in SPARQL with its
FILTER and ORDER BY clauses.

5.1 Experimental Setup

To evaluate our algorithms, we use four real-world datasets. Basic properties of
these datasets are shown in Table 1.

Name #Vertices #Edges #V.Prop. #E.Labels

CiteSeerX 0.93M 2.9M 5 4
YouTube 4.6M 14.9M 8 3
Flickr 6.2M 15.2M 4 3
GovTrack 120K 1.1M 5 6

Table 1: Evaluation datasets

We analyze the performance of the algorithms with randomly generated im-
portance queries. We created the queries by selecting random subgraphs of the
data graph with n vertices and m edges. Random subgraphs are created by
starting with a random vertex of the data graph. We iteratively add a randomly
selected vertex from the neighborhood of any previously selected vertices. From
the random subgraphs we created IQ-queries in the following way. We randomly
selected c vertices of the subgraph, defining them as anchors, and mapped to
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the respective vertices of the data graph. The remaining n − c vertices of the
randomly selected subgraph are defined as variables. The edges (including the
edge labels) of the subgraph are edges in the query. With a probability p, a con-
straint is created from a numeric property of a vertex in the random subgraph.
With a equal probability a constraint is a > or < constraint. The reference value
of a > constraint is the property value in the subgraph - 1, and the reference
value of a < constraint is the property value in the subgraph + 1. Scoring terms
are created similarly to constraints. With a probability t, a numeric property of
a vertex is select to be included in an IQ-term. If an IQ-term consists of more
than one property, the properties are concatenated with a +. The aggregation
function is MAX or SUM with equal probability.

This query generation process ensures that all queries have at least one so-
lution (which is the random subgraph the query has been generated from) and
that (in probability) the distribution of structural patterns and properties used
in constraints and query terms in a set of random queries resembles the respective
distributions in the data graph.

5.2 Experimental Results

We evaluated our system by the selectivity of a query (i.e. the number of answers
a query has), the size of the query (i.e. the number of vertices and edges the
subgraph query has) and the number of desired answers. We used a set of 1000
random queries for the experiments.

Results by selectivity Figure 3 shows the runtime in relation to the answer size of
the subgraph query. All algorithms show a sub-linear increase in the runtime with
an increasing answer size. Reading subgraphs from disk is a dominating factor
of the total runtime. The number of answers to the subgraph query increases
much faster than the required number of subgraph reads because usually many
answers lie in the same subgraphs. Compared to the baseline more sophisticated
algorithms like WCOST and LMax can receive good speed-ups in some but not
all settings - especially when the answer size is high. For non-selective queries
our algorithms are up to one order of magnitude faster than the evaluated triple
stores. For some datasets (Flickr, GovTrack) triple stores perform considerably
worse even for very selective queries.

Results by subgraph query size For experiments on the subgraph query size, we
use 2 pairs of query types (1000 random queries each) where each pair differs
in the number of edges. The results of Figure 4 show that our algorithms scale
very well in the number of vertices. As we increase the number of edges in a
query, the runtime usually decreases as the query gets more selective (i.e. has
fewer answers). Once again we see that our algorithms perform much better than
the triple stores, and the performance difference is especially high for complex
queries.
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Fig. 3: Results by selectivity. Each caption shows the query size, e.g. 6,5,2 means
6 vertices, 5 edges, and 2 anchors.

Results by parameter k We analyzed the impact of the desired number of answers
on runtime. Overall the scaling of our algorithms with respect to the number of
answers is very good (see Figure 5), and is much less marked than for the triple
stores. The almost constant runtime of our algorithms for low values of k is once
again the result of the domination of the total runtime by the time needed to
read a subgraph from disk. When most subgraphs in the neighborhood of the
anchors have to be read to find the top-1 answer then the time to create a few
additional solutions is low.

6 Related Work

We presented algorithms to identify the best answers to importance queries on
attributed graphs. We extended subgraph matching algorithms to answer these
queries, as non-specialist database systems (SQL as well as RDF databases) have
a bad performance on complex subgraph queries. Subgraph queries on relational
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Fig. 4: Results by query size (Top 10, bar: mean, line: median).

databases require many expensive self-joins on a potentially very large edge
table. RDF databases built on top of relational databases suffer from the same
problem. Only RDF databases that store their data as graphs and not as triples
could potentially provide a good performance. Recently Zou et al. [16] showed
the performance advantage of subgraph matching algorithms compared to join-
based algorithms used by triple stores for answering SPARQL queries. A way
to improve the performance of triple stores for top-k SPARQL queries has been
proposed by Magliacane et al. [9]. They presented a rank-aware join algorithm for
top-k SPARQL queries. However, SPARQLRank supports only limited ranking
functions and in particular does not support aggregation functions in the ranking
term as we do.

So answering importance queries via subgraph matching algorithms is the
best available approach, and with the Base algorithm we presented the straight-
forward way to answer importance queries by calling a subgraph matching al-
gorithm. But we also showed that we can do much better than the simple Base
approach by using sophisticated pruning techniques. Pruning strategies for sub-
graph matching have been discussed for decades. A considerable amount of lit-
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Fig. 5: Results by parameter k of top-k queries.

erature has been published on subgraph matching on a single large graph. Since
the early work of Ullman [12] most work on subgraph matching has been con-
ducted on finding better ways to prune the search space of branch-and-bound
algorithms. State-of-the-art algorithms store sophisticated graph invariants in
precomputed indexes [4, 13, 14] to speed up the search. Invariants (in the sim-
plest case the degree of a vertex) can be used to determine whether a vertex in
the graph database cannot be a mapping for a variable in the query graph in an
answer. Good overviews on different algorithms and pruning techniques are in
[6, 11].

Our problem setting is different to this classical problem in two very impor-
tant ways. First, classic subgraph matching searches only for structural patterns
without anchors. This makes the overall computational effort much higher and
is usually – depending on the dataset – in the range of hours. Second, the data
graph is stored in memory. In our problem setting with anchored queries, the
computational effort is much lower. However, our objective is to answer queries
in interactive settings within seconds on large, disk-resident datasets. So I/O effi-
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ciency is an important issue for us. As we showed, we can answer most anchored
queries in less than a second. This is less time than an in-memory algorithm
spends loading the data graph into memory.

We defined importance queries as an extension of standard subgraph queries,
but deriving it from approximate [15] or probabilistic [2] subgraph matching
definitions is straightforward. Approximate matching algorithms do not search
for exact matches, but for a subgraph similar to the query graph. Probabilistic
matching algorithms work on probabilistic graphs, i.e. graphs that model the
probability of the existence of an edge. The intent is to address the problem
of errors in the data or limited knowledge of the system that is modeled in
the graph. The techniques we developed for the advanced WCOST and GMAX
algorithms could be transfered to related problems. Join-based algorithms for
triple stores lack this flexibility.

7 Conclusion and Future Work

In this paper, we motivated and defined the problem of importance queries on
graph databases. Such queries can also be expressed in SPARQL through the
FILTER and ORDER BY constructs. We designed query algorithms for efficient
retrieval of top-k answers to importance queries and evaluated the performance
of the algorithms on large real-world.

By computing upper-bounds for the IQ-scores of partial substitutions, our
most advanced algorithms are able to prune branches of the search tree that will
not lead to a top-k answer. Thus, these algorithms achieve a significantly better
performance than naive implementations. Our best algorithms need less than a
second to answer the majority of our random test queries on graphs with up to
about 15 million edges.

We believe importance queries are an important next step to personalized
graph queries. As a next step, we plan to extend the concept to probabilistic sub-
graph matching. Then we can extend the search to probabilistic graph databases.
For example, image probabilistic “acquaintance” edges in Facebook-style graph
databases inferred from the co-occurrence of people in images.
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