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Abstract. Tool development for and empirical experimentation in OWL
ontology engineering require a wide variety of suitable ontologies as in-
put for testing and evaluation purposes and detailed characterisations of
real ontologies. Empirical activities often resort to (somewhat arbitrarily)
hand curated corpora available on the web, such as the NCBO BioPor-
tal and the TONES Repository, or manually selected sets of well-known
ontologies. Findings of surveys and results of benchmarking activities
may be biased, even heavily, towards these datasets. Sampling from a
large corpus of ontologies, on the other hand, may lead to more rep-
resentative results. Current large scale repositories and web crawls are
mostly uncurated and suffer from duplication, small and (for many pur-
poses) uninteresting ontology files, and contain large numbers of ontology
versions, variants, and facets, and therefore do not lend themselves to
random sampling. In this paper, we survey ontologies as they exist on
the web and describe the creation of a corpus of OWL DL ontologies
using strategies such as web crawling, various forms of de-duplications
and manual cleaning, which allows random sampling of ontologies for a
variety of empirical applications.
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1 Introduction

Since its standardisation by the W3C in 2004, the Web Ontology Language
OWL1 has become a widely used language for representing ontological knowl-
edge. OWL ontologies are used across a wide spectrum of domains, ranging from
chemistry to bio-health informatics and medical data. There exists an increasing
amount of tool support for OWL ontologies, such as OWL reasoners, ontology ed-
itors, ontology browsers and visualisation tools, as well as numerous approaches
to tasks such as ontology mapping, debugging, and modularisation. Testing and
evaluation of proposed techniques and tools form an important part of the de-
velopment process, and while there are some tools that are specifically tailored
towards certain ontologies (such as, for example, the Snorocket reasoner2 which
is aimed at classifying the SNOMED CT ontology [15]), most tools are aimed at
general OWL ontologies. One of the core decisions required for a sound empirical

1 http://www.w3.org/TR/owl2-overview/
2 http://protegewiki.stanford.edu/wiki/Snorocket



methodology is the selection of a suitable dataset and some clarity about that
choice and its implications. In particular, choice of data set can threaten both
the internal validity (i.e. whether a found correlation indicates a causal relation)
and external validity (i.e. the extent to which the result can be generalised).

Current empirical evaluations, such as OWL reasoner benchmarking and
studies on the effectiveness of various debugging techniques, often cherry-pick
a few example ontologies or sample from ontology repositories such as the NCBO
BioPortal.3 Alternatively, crawlers such as Swoogle [6] have collected huge amounts
of semantic documents, contributing a lot to our understanding of the use of se-
mantic web languages, and allowing us to catch a glimpse of the impact that
OWL has on the web ontology landscape. While these crawl-based datasets are
certainly useful for many purposes, they do not necessarily lend themselves to
ontology research as they collect OWL files which may not individually corre-
spond to distinct OWL ontologies.

In this paper, we characterise the landscape of OWL ontologies found on the
web, with a focus on using collections of ontologies for OWL tool development
and evaluation purposes. We describe the challenges of gathering a large and
meaningful corpus of OWL DL ontologies that is suitable for such experimental
tasks, which is based on an automated web crawl combined with several filtering
steps to identify OWL ontologies based on heuristics, and to take into account
duplicates, versions, and facets of ontologies. We discuss the characteristics of
the corpus, such as axiom and constructor usage, OWL profiles, and provenance
data, and compare it to several other collections of OWL ontologies that are
frequently used (or designed for) testing purposes. The purpose of this paper is
twofold: first, we provide insights into the landscape of OWL ontologies found
on the web nearly a decade after OWL became an official standard. Second, we
highlight the issues faced when selecting suitable test corpora in the OWL tool
development process and aim to support tool developers in making informed
decisions when choosing test collections.

2 Preliminaries and background

In this section, we will give a very brief introduction to the web ontology language
OWL 2 and the OWL 2 profiles. We then discuss the use of OWL ontology
collections in empirical evaluations.

2.1 The Web Ontology Language OWL

OWL 2 [3], the latest revision of the Web Ontology Language OWL, comprises
two species of different expressivities, namely OWL 2 DL and OWL 2 Full. The
underlying formalism of OWL 2 DL is the description logic SROIQ(D) [10].
While OWL 2 DL has the familiar description logic semantics (Direct Seman-
tics), OWL 2 Full4 has an RDF-based semantics, which is a superset of the OWL

3 http://bioportal.bioontology.org/
4 http://www.w3.org/TR/owl2-rdf-based-semantics/



2 Direct Semantics; OWL reasoners, however, are restricted to ontologies in (a
subset of) OWL DL.

There exist three named ‘profiles’ for OWL 2, which are syntactic subsets of
OWL 2 DL that are tailored towards different applications, trading expressivity
of the language for efficient reasoning. The OWL 2 EL profile is a tractable
fragment of OWL 2 which is based on the description logic EL++ [2]. OWL 2 QL
(Query Language) which is based on the DL-Lite family of description logics [1],
has been defined for use in applications which focus on query answering over large
amounts of instance data. Reasoning systems for ontologies in the OWL 2 RL
(Rule Language) profile can be implemented using rule-based reasoning engines.

2.2 Datasets used in practice

A wide range of empirical ontology research requires access to a somehow ‘in-
teresting’ set of ontologies as input to experiments. Empirical studies involving
OWL tools and techniques frequently make use of existing ontologies and on-
tology repositories for test and evaluation purposes. In order to put our work
into context with empirical OWL research, we will give an overview of some
of the curated OWL ontology repositories and large-scale collections that are
commonly used for empirical evaluations.

Curated ontology repositories There exists a number of well-known ontology
repositories which are frequently used for empirical experimentation. In what
follows, we will briefly describe some of the most prominent repositories and
their applications in OWL research.

The NCBO BioPortal is an open repository of biomedical ontologies which
invites submissions from OWL researchers. As of April 2013, the repository
contains 341 ontologies in various ontology formats including the full set of OBO
Foundry5 ontologies. Due to its ontologies ranging widely in size and complexity,
BioPortal has become a popular corpus for testing OWL ontology applications in
recent years, such as justification computation [9], reasoner benchmarking [11],
and pattern analysis [13].

The TONES repository is a curated ontology repository which was devel-
oped as part of the TONES project as a means of gathering suitable ontologies
for testing OWL applications. It contains 219 OWL and OBO ontologies and
includes both well-known test ontologies and in-use ontologies, varying strongly
in size and complexity. While ontologies are occasionally added to the reposi-
tory, it can be considered rather static in comparison with frequently updated
repositories, such as BioPortal. The TONES ontologies are frequently used for
empirical studies, either as a whole [11,16], by (semi-)randomly sampling from
the set [12], or as a source of individual ontologies.

Similar to the TONES repository, the Oxford ontology library6 is a col-
lection of OWL ontologies gathered for the purpose of testing OWL tools. The

5 http://www.obofoundry.org/
6 http://www.cs.ox.ac.uk/isg/ontologies/



library, which was established in late 2012, currently contains 793 ontologies from
24 different sources, including an existing test corpus and several well-known in-
use and test ontologies.

The Protégé ontology library7 is a submission-based collection of ontolo-
gies linking to 95 OWL ontologies including some well-known test and in-use
ontologies. While it is not used as frequently as the TONES repository (e.g.
[17]), it fulfils a similar purpose of offering a selection of ontologies from a vari-
ety of domains.

Large-scale crawl-based repositories Crawl-based collections containing
thousands and millions of files are popular sources of ontologies used in ex-
periments. While the two largest collections, Swoogle and Watson, seem to be
no longer under active development, the Billion Triple Challenge dataset is still
updated annually.

Swoogle [6] is a crawl-based semantic web search engine that was established
in 2004. The crawler searches for documents of specific filetypes (e.g. .rdf, .owl),
verifies their status as a valid document of that type, and uses heuristics based
on the references found in existing files to discover new documents. In April 2013,
Swoogle indexed nearly two million documents, and a search for ontologies (i.e.
documents which contain at least one defined class or property) that match
‘hasFiletype:owl’ returned 88,712 results. While Swoogle is an obvious choice for
gathering a large number of OWL ontologies for use in empirical studies (e.g.
[17,14,16]), it does not have a public API and prevents result scraping in order
to reduce server load, which makes it difficult to gain access to all search results.
Furthermore, since the content is not filtered beyond removal of duplicate URLs,
a random sample from Swoogle is most likely to return a set of small, inexpressive
ontologies, or may be heavily biased towards ontologies from certain domains,
as we will discuss in detail in the Section 3.2.

Similar to Swoogle, Watson [4] is a search engine which indexes documents
based on a web crawler that targets semantic web documents. Watson uses
filtering criteria in order to only include valid (that is, parseable) documents and
ranks results according to their semantic richness, which is based on properties
such as the expressivity of an ontology and the density of its class definitions.
In addition to its web interface, Watson also provides APIs which allow users
to retrieve lists of search results for a given keyword. At the time of its release,
Watson was indexing around 25,500 documents; however, to the best of our
knowledge, the service is no longer under active development.

The Billion Triple Challenge (BTC) dataset is an annually updated large
dataset of RDF/XML documents used in the Semantic Web Challenge.8 The
2011 set which contains 7.411 million RDF/XML documents crawled from the
web using various well-known Linked Data applications as seeds, such as DBPe-
dia and Freebase. According to an analysis by Glimm et al. [7], the set contains
just over 115,000 documents that contain a the rdfs:subClassOf predicate, which

7 http://protegewiki.stanford.edu/wiki/Protege\_Ontology\_Library
8 http://challenge.semanticweb.org/



may be considered sufficient to class the document as an ontology. However,
the authors identified that the corpus is biased towards several large clusters
of documents from the same domain, which is indicated by the relatively small
number of domains (109) that these potential ontologies originate from.

3 Gathering a corpus of OWL DL ontologies

While hand curated repositories often lack the potential for generalisability of
claims, large-scale document collections suffer from a different problem: they
typically contain many small and trivial OWL files as well as large numbers of
duplicates, which means that a (naive) random sample is likely to introduce a
heavy bias towards irrelevant cases for applications such as reasoner benchmark-
ing and ontology profiling. If we want to make claims about OWL ontologies on
the web, we need a way to obtain a set of unique ontologies (at least to some
degree). For our corpus, we consider ontologies that are in OWL DL (and not
mere RDFS), contain some logical content and are parseable by the OWL API.
In this section, we present our approach to addressing this issue by collecting a
large amount of documents through web crawling and applying a series of filter-
ing procedures. The focus of our work lies on the filtering steps applied to arrive
at a set with a a high density of (relatively) unique OWL DL ontologies. Table
1 shows an overview of the individual steps in the data curation procedure and
the numbers of files filtered out in each step.

3.1 Data collection

The initial set of documents was collected using a standard web crawler with a
large seed list of URLs obtained from existing repositories and previous crawls.
The sample obtained for this survey is preliminary in the sense that it is the
result of only three weeks of downloading and crawling. We expect the results
to improve gradually as the crawler collects more data, which also allows us to
refine our heuristics for identifying OWL ontologies. The seeds for the crawl were
identified as follows:

– 336,414 URLs of potential ontology files obtained directly from a Google
search, Swoogle, OBO foundry, Dumontier Labs,9 and the Protégé Library.

– 43,006 URLs obtained from an experimental crawl in 2011.
– 413 ontologies downloaded from the BioPortal REST API.

The crawler is based on crawler4j,10 a multi-threaded web crawler implemented
in Java. We use a standard crawling strategy (broad and deep seeding, low
crawling depth, i.e. 3 levels), searching for files ‘typical’ extensions, e.g. owl, rdf,
obo, owl.xml, and variations of the type owl.txt, owl.zip, etc. Additionally, the
crawler tests whether a link it followed might actually be an OWL file by using

9 http://dumontierlab.com/
10 http://code.google.com/p/crawler4j/



a set of syntactic heuristics (e.g. OWL namespace declaration in all its syntactic
variants), thus catching those OWL files that do not have a file extension (or a
non-standard one). The crawler only identifies potential URLs, which are then
passed on to a candidate downloader that attempts to download files in certain
intervals. In the short period of time that the crawler was running, 68,060 new
candidate documents where discovered. A large number of candidates in the seeds
were not retrievable, due to, amongst others, unreachable domains or possibly
restrictions for crawler access.

3.2 Data curation

Identifying valid OWL files Many surveys of documents on the web acknowl-
edge the necessity of preprocessing crawl results in order to remove irrelevant
and duplicate files. Our pipeline for identifying candidate OWL files from the
files gathered by the crawler is as follows:
1. Attempting to load and parse files with the OWL API can be computa-

tionally expensive, especially for non-OWL files for which the API tries out
every possible parser before failing, and for large OWL files. Thus, we applied
syntactic heuristics to filter out documents
– that were clearly not OWL (less than six lines of text, first fifty lines

contain the <html> tag),
– or did not contain any OWL declaration (in any syntax) or OBO format

version in the first sixty lines.
This step reduced the initial dataset from 268,944 files to 231,839. A random
(statistically significant) sample of 1,037 files that we attempted to load with
the OWL API revealed that approximately 11% of the thus removed files
were falsely identified as not being OWL.

2. The next step was the removal of byte-identical files. We used Apache Com-
mons IO11 to determine file stream identity. 43,515 files were grouped into
clusters of byte-identical files.

3. Next, all remaining unique files were loaded and saved with the OWL API
[8]. Relatively few files (4,590) where not loadable due to parser errors, while
31 did not terminate loading in practical time. After this step, the corpus
contained 213,462 valid OWL files.

4. We then removed further duplicates by excluding 6,142 files that have a
byte-identical OWL/XML serialisation. The result of the curation pipeline
to this point is a set of 207,230 unique (in terms of byte-identical duplicates)
and valid OWL files.

Note that we consider the loss of ontologies which cannot be parsed by the
OWL API to be negligible, since this API is the most comprehensive of its kind,
covering most types of OWL syntaxes and all OWL 2 constructs.

Cluster detection One of the main difficulties of gathering a corpus of ontolo-
gies rather than a corpus of arbitrary OWL files is the problem of identifying

11 http://commons.apache.org/io/



Table 1: Summary of the curation pipeline.

Document state Removed Size after

Retrieved 268,933

Passed heuristic 37,094 231,839

Passed OWL API, de-duplicated (byte identity) 18,377 213,462

De-duplicated (byte identity after common serialisation) 6,142 207,320

Systematically manually filtered 197,449 9,871

Non-OWL 2 DL and empty ontologies filtered 5,324 4,547

what exactly constitutes a single ontology. This results from the different non-
standard ways of publishing ontologies:
1. There may exist several different versions of an ontology. These can be either

subsequent versions which have been released in sequence (e.g. version 1.0,
1.1, . . . ), or slightly modified variants, such as ‘light’ or ‘full’.

2. Single ontologies may be distributed over multiple files (e.g. DBPedia, Se-
mantic Media Wikis) or published in modules contained in individual files
(faceted publishing). The individual files are often very small and describe
only trivial fragments of larger OWL ontologies.
In order to identify clusters of versions, variants, and distributed ontologies,

we applied two filtering steps based on similar file sizes and file names, and based
on the source of the OWL file.

File name and file size patterns First, a random sample of 100 ontologies was
repeatedly drawn from the corpus, and grouped by file size and file name patterns
in order to identify clusters of files. If an identified cluster contained large groups
of very similar files (such as pages of a Semantic Media Wiki or proofs from
Inference Web), all files belonging to the cluster (based on the domain and file
name pattern) were removed from the corpus. This process was repeated until
a random sample of 100 ontologies appeared heterogeneous enough, i.e. did not
contain large numbers of files with obviously similar file names and sizes. In this
process, the sample was reduced from 207,230 to just above 19,000 files, which
is a reduction by more than 90%.

Domain names The file based cluster detection worked well for weeding out the
most prominent clusters of distributed ontologies. We then grouped the remain-
ing files by the domain source and inspected the biggest clusters of domains man-
ually to remove files that have no usage (including mere usage of owl:sameAs).
Some large contributor domains were eliminated almost entirely (productontol-
ogy.com), others required more careful attention (sweet.jpl.nasa.gov, for exam-
ple, provides subsequent versions of each ontology, of which we decided to keep
the latest ones).

The largest clusters identified in the cluster detection stage were data gen-
erated by various Semantic Media Wikis (146,866), files containing formulas,
rules, and related metadata from the Inference Web (19,042). Other notable
clusters were generated by the New York Times subject headings SKOS vocab-



(a) Before manual cluster removal. (b) After manual cluster removal.

Fig. 1: Similarity graphs before (sample) and after manual cluster removal.

ulary (10,438), the UniProt Protein Knowledge Base (5,580 RDF files), as well
as files describing instance data of the well-known Friend of a Friend (FOAF)
vocabulary (2,312). In total, the clustering process removed over 50% of the on-
tologies in the crawl set, reducing the corpus to 9,871 files which we presumed
to be largely cluster-free.

In order to illustrate the effects of the manual cluster removal, Figure 1
shows two graphs describing the (pairwise) similarity between the ontologies in
the corpus before the clustering (on a random sample of 4,547 out of 207,230
ontologies) in Figure 1a and after the clustering (the final 4,547 ontologies, as
described in the next section) in Figure 1b. Our notion of similarity is described
in section 4.5. We can see that the degree of similarity within the corpus before
the filtering is significantly higher than after the cluster removal, with 2,815
connected components before the cluster removal, compared to 521 in the final
corpus. Also, the amount of ontologies with no or only few similarity relations
is considerably lower after the cluster removal (higher degree of uniqueness).

OWL DL filtering Having applied the filtering steps described above, the
remaining corpus of OWL ontologies obtained from the crawl contained 9,871
files of which 9,827 files could be loaded.12 Out of these, 208 were empty (ei-
ther no axioms, or no entities in the signature, including annotation properties)
and 3,207 fell under RDF(S). A further 1,865 ontologies were not in the OWL
2 DL profile for reasons other than missing declarations. We consider missing
declarations to be minor violations and thus decided to simply inject them to
ensure a more meaningful profile membership (an ontology with a missing class
declaration should still be in DL if it was in DL without it).

Apart from missing class- (77.4%), annotation- (67.8%), object property-
(34.4%) and data property declarations (15.1%), the main reason for the remain-
ing 1,865 ontologies not falling into OWL DL was the use of reserved vocabulary,
most prominently for class IRIs, which occurred in 62.5% of the ontologies and

12 Since the ontologies were not merged with their imports closure at the time of down-
loading, some ontologies failed loading due to missing imports during the analysis.
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Fig. 2: Provenance data of the ontologies in the crawl corpus.

for object properties in 16.5%. Further, a number of ontologies (up to 5%) suf-
fered from various other invalid IRI problems, such as using an IRI for both a
datatype and a class (5.2%) and using non-absolute IRIs (2.8%). The remaining
issues were caused by the use of non-simple properties in cardinality restrictions.
All these violations—which affected almost one fifth of the 9,827 valid OWL files
we gathered—cause common OWL DL reasoners to either reject or only process
parts of the ontologies.

3.3 Provenance data

Domain sources In the final corpus of 4,547 valid and non-empty OWL files,
we count 728 distinct domains (an average of 6.5 ontologies per domain), spread
across 52 top level domains. The distribution of top level domains is very similar
to the one determined by a Swoogle study characterising the semantic web in
2006 [5]. As Figure 2a shows, ‘.org’ contributes almost half of the documents
(42%), followed by ‘.com’ (12%) and ‘.edu’ (10%).

File extensions and syntax Figures 2b and 2c show an overview of the OWL
syntaxes and file extensions used for the published OWL files. We can see that
the vast majority of ontologies were originally serialised in RDF/XML (4,170),
while only a fraction (less than 1%) were published as OWL/XML files. The most
frequent file extension used was .owl (67% of the files), followed by .rdf (15%)
and .obo (5%). Interestingly, it appears that only a single file in the corpus had
the extension .owx, the recommended extension for OWL/XML serialisations.13

4 Comparison of OWL collections

In order to put our crawl-based OWL corpus in context with existing collections
of OWL ontologies, we compare its basic ontology metrics against four commonly
used datasets. The datasets were selected based on their popularity and intended
use as test corpora, as discussed in Section 2.2; thus, some of the less prevalent

13 http://www.w3.org/TR/owl2-xml-serialization/



Table 2: Entity usage (average, median, maximum) in the five collections.

Crawl BioPortal Oxford Swoogle TONES

Classes
avg 1,320 11,534 5,652 16 763
med 27 470 209 9 138
max 518,196 847,760 244,232 5,104 524,039

Object properties
avg 43 37 43 11 34
med 8 7 10 15 8
max 4,951 1,390 964 251 922

Data properties
avg 14 9 5 16 13
med 1 0 0 18 0
max 2,501 488 1,371 133 708

Individuals
avg 484 1,075 3,810 29 163
med 1 0 0 15 0
max 604,209 232,646 466,937 855 178,308

Logical axioms
avg 3,789 28,050 49,990 60 1,332
med 69 958 729 8 256
max 740,559 1,163,895 2,492,725 5,098 1,100,724

sets (e.g. the Protégé library) were excluded. The statistics are given here to
allow a comparison between the collections, but no statement is made about
which dataset is ‘better’, as this obviously depends heavily on the purpose.
Importantly, the collections in this section are largely left untouched and are not
curated in the way the Web Crawl was: they may even contain OWL Full and
RDFS. The only criterion for inclusion apart from availability was parseability
by the OWL API.

The BioPortal and TONES snapshots are from November 2012 and include
those OWL and OBO files that could be downloaded and loaded by the OWL
API. Files that could be retrieved, but not parsed, usually suffered from unre-
solvable imports. The third dataset is a sample from a Swoogle snapshot from
May 2012 containing OWL and SKOS ontologies. We drew a statistically sig-
nificant random sample (99% confidence, confidence interval 3) of 1,839 files
from the Swoogle snapshot, of which 1,757 could be loaded. The last collection
is a snapshot of the Oxford ontology library from April 2013. The final sets
were: Crawl (4,547), BioPortal (292), Oxford (793), Swoogle sample (1,757) and
TONES (205). For the reasons discussed in section 3.2, missing entity declara-
tions were injected prior to metrics gathering in all cases.

4.1 Entity usage

Classes, properties, individuals Table 2 shows a detailed overview of the
average, median, and maximum values of the relevant logical entities occurring in
the five collections (minimum numbers were 0 in all collections, thus they are not
listed in the table). Swoogle clearly stands out as a collection with comparatively
small numbers of entities per ontology. On average, both the BioPortal and
Oxford collections contain very large numbers of logical axioms and classes,
with the Oxford collection also containing several ontologies that are particularly
heavy on individuals. In comparison, the crawl corpus contains ontologies with
on average significantly fewer classes than the curated repositories.
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Fig. 3: Distribution of ontology sizes, binned by number of logical axioms.

Logical axioms In addition to the logical axiom counts given in Table 2, Figures
3a and 3b show a comparison of the ontology sizes in the five collections, sorted
into six size bins ranging from less than 10 to over 100,000 logical axioms. We
can see that the majority of ontologies in the crawl-based collections (Crawl
and Swoogle) are in the lower two bins of fairly small ontologies (less than 100
axioms), whereas the other three collections roughly follow a normal distribution
(given this particular binning). On closer inspection we find that the Swoogle
snapshot still contains a large number of trivial files from the Semantic Media
Wiki, which significantly adds to the number of small ontologies. In the case of
the Oxford library and TONES this is likely to be due to the editors explicitly
selecting a range of ‘interesting’ (i.e. medium to large) ontologies.

4.2 Constructors and axiom types

Constructors Figure 4 shows a comparison of the constructor usage in the
five collections (as returned by the OWL API). In the crawl corpus, we can see
that beyond the basic constructors in AL (intersection, universal restrictions,
existential restrictions of the type ∃r.>, and atomic negation) which are used by
the majority (88%) of ontologies in the crawl, property-based constructors, such
as inverse properties I (35% of ontologies) and property hierarchiesH (30%), are
the most prevalent across the crawl corpus. Perhaps surprisingly, full existential
restriction (of the type ∃r.C for a possibly complex expression C) are only used in
16% of the ontologies. Furthermore, only a very small number of ontologies make
use of qualified number restrictions Q (5%) and complex property hierarchies R
(4%), which might be explained by the fact that they were only introduced with
OWL 2.

Regarding the other collections, the Swoogle snapshot only makes use of
very few constructors, leaving out most of the more expressive ones. Looking
at the axiom type usage in Table 3, this may be explained by the fact that
the Swoogle snapshot contains mainly assertion axioms which, in this case, only
contain atomic entities and no complex constructors. On the other end of the
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spectrum, the remaining collections contain similarly large numbers of ontolo-
gies using property-related constructors such as transitive properties (TRAN),
inverse properties I, and property hierarchies H. While there is no general trend
towards a ‘most complex’ collection, we can find high numbers of ontologies with
transitive properties in the BioPortal and Oxford collections, whereas the crawl
corpus contains a comparatively large number of ontologies with nominals O
(28%) and unqualified number restrictions N , and all three curated collections
(BioPortal, Oxford, and TONES) contain (proportionally) more full existential
restrictions E than the crawl. As with the crawl corpus, the least used construc-
tors in all collections are qualified number restrictions Q and complex property
hierarchies R, along with the union (‘or’) operator, which occurs in less than
10% of ontologies in all collections.

Axiom types Table 3 shows an overview of the most frequent axiom types
(in terms of total usage in all collections, not taking into account entity dec-
larations).14 We can see that by far the most frequently used axiom types in
the crawl corpus are AnnotationAssertion and SubClassOf axioms. Domain and
range axioms on object properties also occur in nearly half of the ontologies in
the corpus; interestingly, their frequency is roughly pairwise identical across all
collections, which may indicate that ontology developers generally add domain
and range axioms together when introducing object properties. As we have al-
ready seen in the discussion on constructors, object property related axiom types
such as subproperties, transitive and inverse properties occur frequently in be-
tween one fifth and nearly half of the ontologies in the different collections (with
the exception of Swoogle). Class related axioms, such as DisjointClasses and
EquivalentClasses, can be found equally often in the four collections. This shows

14 Note that annotations were removed during the BioPortal download and serialisation
process; thus, the corpus does not contain any AnnotationAssertion axioms.



Table 3: Axiom type usage as proportion of ontologies that use an axiom type.

Crawl BioPortal Oxford Swoogle TONES

SubClassOf 77.0% 96.9% 79.4% 5.6% 92.2%

AnnotationAssertion 78.1% - 88.9% 36.4% 68.3%

ClassAssertion 44.8% 30.0% 69.7% 35.5% 26.3%

ObjectPropertyRange 47.2% 36.5% 45.8% 1.0% 44.4%

ObjectPropertyDomain 45.6% 38.2% 44.1% 0.9% 43.4%

EquivalentClasses 36.8% 37.9% 44.6% 1.1% 45.4%

SubObjectPropertyOf 30.1% 40.6% 44.4% 0.6% 34.6%

TransitiveObjectProperty 22.0% 46.1% 42.9% 0.3% 28.3%

DisjointClasses 31.0% 42.3% 24.8% 0.3% 41.0%

InverseObjectProperties 31.1% 33.4% 32.8% 0.6% 27.3%

DataPropertyRange 31.5% 29.7% 15.1% 0.6% 27.3%

FunctionalObjectProperty 18.4% 29.4% 24.3% 0.2% 26.8%

DataPropertyDomain 29.6% 27.3% 13.7% 0.5% 22.9%

ObjectPropertyAssertion 17.2% 13.3% 18.5% 26.2% 12.2%

FunctionalDataProperty 15.2% 21.2% 5.4% 0.2% 20.0%

DataPropertyAssertion 13.0% 9.6% 10.8% 19.0% 6.8%

that, while the clear majority of axioms are fairly ‘trivial’ SubClassOf and Clas-
sAssertion axioms, more complex axiom types occur frequently in these OWL
ontologies.

4.3 Datatypes

Regarding the usage of datatypes, we found that a very small number of built-in
datatypes occur frequently in the five collections, whereas the remaining types
are only used rarely. The most frequently used datatypes are rdf:plainLiteral (be-
tween 25.9% in BioPortal15 and 82.1% of the ontologies in the Oxford corpus)
and xsd:string datatypes (between 26.8% in the Swoogle snapshot and 59.7%
in our crawl corpus). In the Swoogle snapshot, the general datatype usage is
lower than in the other collections, with a maximum of only 36.6% of ontolo-
gies using rdf:plainLiteral. Interestingly, however, the ontologies in the Swoogle
snapshot make more frequent use of xsd:integer (25.3%), xsd:dateTime (25.1% of
ontologies), and xsd:decimal (24.2%) than the other collections, which all range
between only 1.5% and 10.7% for these types. Finally, across the collections,
most other built-in datatypes occur in a small number of ontologies, with the
exception of rdfs:literal, which can be found in 18% of the ontologies in the crawl
corpus, and xsd:anyURI, which is used in over a third (37.8%) of the ontologies
in the Oxford collection.

4.4 OWL profiles

As mentioned in Section 2, the OWL 2 profiles are relevant for OWL reasoners,
which are only compatible with OWL DL ontologies, or may be tailored towards

15 Due to the removal of annotations in the BioPortal download it is likely that the
figures for the BioPortal collection are lower than they would be with annotations.



Table 4: OWL 2 profiles in the collections.

Crawl BioPortal Oxford Swoogle TONES

Full 0.0% 17.1% 15.3% 3.2% 22.4%

DL 100% 82.9% 84.7% 96.8% 77.6%

EL only 1.8% 16.4% 3.0% 0.0% 9.8%

EL total 4.0% 29.4% 3.2% 0.6% 19.0%

QL only 3.6% 0.7% 0.9% 0.1% 0.0%

QL total 4.8% 33.2% 9.2% 57.5% 18.0%

RL only 15.4% 1.0% 18.0% 33.3% 2.0%

RL total 19.6% 22.9% 27.1% 90.3% 11.7%

DL only 72.7% 29.8% 53.6% 5.8% 46.8%

Table 5: Overlap comparison
between the collections.

Corpus 1 Corpus 2 Sim. Con.

Crawl BioPortal 10.9% 17.6%

Crawl TONES 11.8% 19.1%

TONES BioPortal 11.9% 17.9%

Swoogle Oxford 12.5% 17.3%

Swoogle BioPortal 14.2% 15.9%

Swoogle TONES 15.0% 17.1%

Crawl Swoogle 15.1% 36.3%

Oxford BioPortal 16.7% 23.2%

Crawl Oxford 16.8% 24.2%

TONES Oxford 19.1% 27.0%

a specific subset of OWL 2 DL. Table 4 shows an overview of the profiles for the
different ontologies. Note that the profiles are not exclusive, that is, an ontology
in one profile may also be in the other profiles; thus, we distinguish between
ontologies which are in one profile only, and the total proportion of ontologies
in a profile (including other profiles). ‘DL only’ denotes the proportion of OWL
DL ontologies that do not fall into any of the three sub-profiles.

Across the collections, the level of OWL DL ontologies is fairly high (min-
imum 77.6% in TONES), whereas the occurrence of ontologies in the OWL
profiles varies strongly. We can see immediately that the majority of ontologies
in the crawl corpus does not fall into any of the sub-profiles EL, QL, or RL,
whereas the Swoogle ontologies are largely in a combination of the RL and QL
profiles (due to them being fairly inexpressive), with only a fraction (5.8%) being
more expressive. A comparatively large number of ontologies (16.4%) in BioPor-
tal fall into the OWL 2 EL (only) profile, which is likely caused by the presence
of many large bio-medical ontologies in the corpus that are explicitly designed
to be in EL. On the other hand, there are almost no QL or RL only ontologies
in BioPortal.

4.5 Overlap analysis

In order to determine the to which extent the different collections overlap (i.e.
shared ontologies), we performed a pairwise comparison of the ontologies in
each of the five collections based on two measurements: a) two ontologies are
similar if the overlap (the intersection of the signatures divided by the union of
the signatures) is at least 90%. b) There exists a containment relation between
two ontologies O1, O2, if sig(O1) ⊆ sig(O2) or sig(O2) ⊆ (O1). As shown
in Table 5, the pairwise similarity overlap (Sim.) between the collections ranges
between 10.9% (crawl vs. BioPortal) and 19.1% (TONES vs. Oxford repository).
The containment overlap (Con.) between the collections is significantly higher,
ranging between 15.9% (Swoogle vs. BioPortal) and 36.3% for the containment
relations between the crawl corpus and the Swoogle sample, which is likely to
be caused by the heavy use of Swoogle results as seeds for the web crawler.



5 Conclusions and future work

In this paper, we have presented an overview of the OWL ontology landscape
with a focus on the application of different collections for empirical evaluations.
We presented an approach to creating a large yet interesting corpus of OWL
DL ontologies suitable for testing and evaluation purposes, characterised the
corpus, and compared it to other existing collections of OWL ontologies, such
as the NCBO BioPortal and a random sample from the Swoogle search engine.
We have seen that drawing a random sample from an unfiltered crawl-based
collection may be representative for the general population of OWL files ‘found
on the web’, however, it does not yield relevant data to be used for measuring, for
example, reasoner performance on ‘actual’ ontologies. The direct comparison of
these ontology metrics allows OWL tool developers to make an informed decision
when selecting a suitable collection of OWL ontologies for testing purposes, while
it also shows that a careful filtering procedure of a crawl-based corpus brings
the resulting set closer to curated repositories in terms of ontology size and
expressivity.

While we believe that we have laid the foundations for a large, crawl-based
repository of ontologies for empirical evaluations, we acknowledge some of the
limitations our current collection strategy suffers from:
1. Resource limitations (essentially memory allocated to the Java Virtual Ma-

chine) might have caused a few very big ontologies to have slipped through
in the initial steps of the curation procedure.

2. Web crawlers may not reach the Hidden or Deep Web.
3. The manual curation steps are not easily repeatable.
4. Problems with unavailable ontology imports.

The main limitations of our approach stem from general problems with web
crawling, since it is unlikely that we will be able to index all OWL ontologies
that are reachable on the web. However, we expect that a stronger focus on meta
crawling (i.e. crawling search engines) and more extensive (manual) repository
reviewing will gradually expand our seed. With the insights we have gained into
general cluster characteristics, we aim to replace the manual filtering procedures
by automated ones. The problem of unavailable ontology imports can be easily
solved by downloading the imports closure of an ontology in the crawling and
ontology validation process.

In addition to improving the crawling and validation strategies and the anal-
ysis of the actual content of the ontologies, we focus on establishing a repository
of OWL ontologies that allows researchers to retrieve specific samples of ontolo-
gies for various empirical tasks. One common problem for ontology researchers
is the retrieval of a set of ontologies of a particular characteristic, for example
‘a set of OWL 2 EL ontologies with more than 100 axioms’. We plan to provide
an infrastructure that makes it possible to retrieve datasets that can also be
made permanently accessible to other researchers, thus aiding the reproducibil-
ity of empirical experimentation. A prototype of this repository can be found at
http://owl.cs.manchester.ac.uk/owlcorpus.
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