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Abstract. We discuss the problem of minimizing TBoxes expressed in the light-
weight description logic ££, which forms a basis of some large ontologies like
SNOMED, Gene Ontology, NCI and Galen. We show that the minimization of
TBoxes is intractable (NP-complete). While this looks like a bad news result,
we also provide a heuristic technique for minimizing TBoxes. We prove the cor-
rectness of the heuristics and show that it provides optimal results for a class of
ontologies, which we define through an acyclicity constraint over a reference re-
lation between equivalence classes of concepts. To establish the feasibility of our
approach, we have implemented the algorithm and evaluated its effectiveness on
a small suite of benchmarks.

1 Introduction

It is well-known that the same facts can be represented in many different ways, and that
the size of these representations can vary significantly. This is also reflected in ontology
engineering, where the syntactic form of ontologies can be more complex than neces-
sary. For instance, throughout the development (and the life-cycle) of an ontology, the
way in which concepts and the relationship between them are represented within the
ontology are constantly changing. For example, a name for a complex concept expres-
sion is often introduced only after it has been used several times and has proved to be
important. Another example are dependencies between concepts that evolve over time,
resulting in new subsumption relations between concepts (A; C As). As a result, previ-
ously reasonable concept expressions may become unnecessarily complex. In the given
example, A; M As becomes equivalent to A;.

Clearly, unnecessary complexity impacts on the maintenance effort as well as the
usability of ontologies. For instance, keeping track of dependencies between complex
concept expressions and relationships between them is more cumbersome when it con-
tains unnecessarily complex or unnecessarily many different concept expressions. As
a result, the chance of introducing unwanted consequences is higher. Moreover, unin-
tended redundancy decreases the overall quality of the ontology.

Removing unnecessary syntactic complexity from ontologies by hand is a difficult
task: for the average ontology, it is almost impossible to obtain the minimal represen-
tation without tool support. Thus, automated methods that help to assess the current
succinctness of an ontology and generate suggestions on how to increase it would be
highly valued by ontology engineers.

It is easy to envision scenarios that demonstrate the usefulness of rewriting for re-
ducing the cognitive complexity of axioms. For instance, when a complex concept C' is



frequently used in the axioms of an ontology and there is an equivalent atomic concept
Ac, the ontology will diminish in size when occurrences of C' are replaced by Ac.

Example 1. Consider the following excerpt from the ontology Galen [1]:

Clotting C JactsSpecificallyOn.(Blood M JhasPhysicalState. (1)
(PhysicalState M JhasState.liquid)) M
JhasOutcome.(Blood M JhasPhysicalState.solidState)
LiquidState = PhysicalState [ JhasState.liquid 2)
LiquidBlood Blood M JhasPhysicalState.LiquidState 3)

Given concepts defined in Axioms 2 and 3 above, we can easily rewrite Axiom 1 to obtain the
following, simpler axiom containing only 6 references to concepts and roles (as opposed to 10
references in Axiom 1):

Clotting C JactsSpecificallyOn.LiquidBloodl1 4)
JhasOutcome.(Blood M JhasPhysicalState.solidState)

In description logics [2], few results towards simplifying ontologies have been ob-
tained so far. Grimm et al. [3] propose an algorithm for eliminating semantically redun-
dant axioms from ontologies. In the above approach, axioms are considered as atoms
that cannot be split into parts or changed in any other way. With the specific goal of
improving reasoning efficiency, Bienvenu et al. [4] propose a normal form called prime
implicates normal form for ALC ontologies. However, as a side-effect of this transfor-
mation, a doubly-exponential blowup in concept size can occur.

In this paper, we investigate the succinctness for the lightweight description logic
EL. The tractable OWL 2 EL profile [5] of the W3C-specified OWL Web Ontology
Language [6] is based on DLs of the £L family [7]. We consider the problem of finding
a minimal equivalent representation for a given £L£ ontology. First, we demonstrate
that we can reduce the size of a representation by up to an exponent even in the case
that the ontology does not contain any redundant axioms. We show that the related
decision problem (is there an equivalent ontology of size < k?) is NP-complete by
a reduction from the set cover problem, which is one of the standard NP-complete
problems. We also show that, just as for other reasoning problems in ££, ontology
minimization becomes simpler under the absence of a particular type of cycles. We
identify a class of TBoxes, for which the problem can be solved in PTIME instead
of NP and implement a tractable algorithm that computes a minimal TBox for this
class of TBoxes. The algorithm can also be applied to more expressive and most cyclic
TBoxes®, however without a guarantee of minimality. We apply an implementation of
the algorithm to various existing ontologies and show that their succinctness can be
improved. For instance, in case of Galen, we managed to reduce the number of complex
concepts occurrences by 955 and the number of references to atomic concepts and roles
by 1130.

3 The extension to general TBoxes is a trivial modification of the algorithm



The paper is organized as follows: In Section 2, we recall the necessary preliminar-
ies on description logics. Section 3 demonstrates the potential of minimization. In the
same section, we also introduce the basic definitions of the size of ontologies and for-
mally state the corresponding decision problem. In Section 4, we derive the complexity
bounds for this decision problem. Section 5 defines the class of TBoxes, for which the
problem can be solved in PTIME instead of NP and presents a tractable algorithm that
computes a minimal TBox for this class of TBoxes. In Section 6, we present experimen-
tal results for a selection of ontologies. Finally, we discus related approaches in Section
7 before we conclude and outline future work in Section 8. Further details and proofs
can be found in the extended version of this paper.

2 Preliminaries

We recall the basic notions in description logics [2] required in this paper. Let N¢
and Np be countably infinite and mutually disjoint sets of concept symbols and role
symbols. An £L concept C'is defined as

C:=AT|ICNC|3r.C,

where A and r range over N¢ and N, respectively. In the following, we use sym-

bols A, B to denote atomic concepts and C, D, E to denote arbitrary concepts. A fer-
minology or TBox consists of concept inclusion axioms C' = D and concept equiv-
alence axioms C' = D used as a shorthand for C' = D and D T C. The signa-
ture of an £L concept C or an axiom «, denoted by sig(C) or sig(«), respectively,
is the set of concept and role symbols occurring in it. To distinguish between the set
of concept symbols and the set of role symbols, we use sig(C) and sigp(C), re-
spectively. The signature of a TBox 7, in symbols sig(7") (correspondingly, sig.(7)
and sig (7)), is defined analogously. Additionally, we denote the set of subconcepts
occurring in a concept C as sub(C) and the set of all subconcepts including part-
conjunctions as subn (C). For instance, for C' = 3r.(A;MA2MAs) we obtain sub(C) =
{HT‘.(Al M As M A3),A1 M As M A3,A17A2,A3} and subm(C’) = {37“(/41 MnAy M
Ag), Al 1 A2 [l Ag, A]_ M AQ, Al M A3, A2 1 A3, A]_, Ag, Ag} ACCOTdil’lgly, we denote
the set of subconcepts occurring in a TBox 7 as sub(7) and the set of all subconcepts
including part-conjunctions as subn (7).

Next, we recall the semantics of the above introduced DL constructs, which is de-
fined by means of interpretations. An interpretation Z is given by the domain AZ and a
function - assigning each concept A € N¢ a subset AZ of AZ and each role r € Ny
a subset 77 of AT x AT, The interpretation of T is fixed to AT, The interpretation
of an arbitrary £L£ concept is defined inductively, i.e., (C M D) = €% N D* and
(3r.C)t = {x | (z,y) € rt,y € CT}. An interpretation Z satisfies an axiom C C D
if CZ C DZ. 7T is amodel of a TBox, if it satisfies all of its axioms. We say that a TBox
T entails an axiom « (in symbols, 7 |= «), if « is satisfied by all models of 7. A TBox
T entails another TBox 77, in symbols 7 = 77,if T = aforalla € 7. T =T isa
shortcut for 7 = 7" and 7" = T.



3 Reducing the Complexity of Ontologies

The size of a TBox T is often measured by the number of axioms contained in it (|77).
This is, however, a simplified view of the size, which neither reflects cognitive com-
plexity, nor the reasoning complexity. In this paper, we measure the size of a concept,
an axiom, or a TBox by the number of references to signature elements as stated in the
definition below.

Definition 1. The size of an EL concept D is defined as follows:

- for D € 5ig(T)U{T}, [(D) =1;

- for D = 3r.C, [(D) = [(C) + 1 where v € sigr(T) and C is an arbitrary
concept;

— for D =C1 M Csy, [(D) = [(Cy) + [(Cy) where Cy, Cy are arbitrary concepts;

The size of an EL axiom (one of Cy C Cy, C1 = Cy) and a TBox T is accordingly
defined as follows:

- J(C1 E Cq) = [(Cy) + [(C2) for concepts C1, Cy;
- [(C1 = C2) = [(Ch) + [(C2) for concepts Cy, Ca.
- [(T)=>uer [(a)foraTBox T.

The above definition, for instance, can serve as a basis for computing the average size
of axioms (f(7) + |7|) within an ontology. In addition to the above measure of size,
the number of distinct complex concept expressions sub(7") and the overall number of
occurrences of such concept expressions (with the corresponding values related to | 7)
can serve as an indication of how complex are concept expressions within the ontology.
In the following example, we demonstrate the difference between the two measures |7 |
and [(7) and show how the complexity of an ontology can be reduced in principle (by
up to an exponent for ontologies without redundant axioms, i.e., axioms that can be
omitted without losing any logical consequences).

Example 2. Let concepts C; be inductively defined by Cy = A, C;41 = Ir.C; N
Js.C;. Intuitively, C; of concepts have the shape of binary trees with exponentially
many leaves. Clearly, the concepts grow exponentially with i, since [(C;) = 2 + 2 -
[(C;_1). For a natural number n, consider the TBox 7,:

On—l E B
B, =C; 1<i<n-1
While 7, does not contain any redundant axioms, it can easily be represented in a more
compact way by recursively replacing each C; by the corresponding B;, yielding 7,.:
anl E B
Bl = Cl
B'H—l = E'T.Bi I E'SBI 1 < 1 <n-— 1

While the number of axioms is the same in both cases, the complexity of 7, is clearly
lower. E.g., for n = 5, we obtain [(7,) = 134 and [(7,)) = 24.



We now consider the problem of finding the minimal equivalent £L representation
for a given TBox. The corresponding decision problem can be formulated as follows:

Definition 2 (P1). Given an EL TBox T and a natural number k, is there an EL TBox
T with [(T") < k such that T' = T.

In general, the corresponding minimal result is not unique. We denote the set {7 |
T’ = T} by [T]. Note that the minimality of the result is trivially checked by deciding
P1 for a decreasing number k until the answer is negative.

In literature, there are different variations of the ontology minimization problem
that cover specific cases. Perhaps the simplest examples for avoidable non-succinctness
are axioms that follow from other axioms and that can be removed from the ontology
without losing any logical consequences. While some axioms including the last axiom
in the above example can be removed in any representations, in general, subsets of
axioms can be exchangeable.

Example 3. Consider the ontology 7 :

CCarC Ir.DC D
cCD Jr.C C Jdr.D

T has two subset ontologies, 77 and 7T5:
Ti={CE3C,Ir.CCIr.D,3r.DC D}
T:={CC3IC,CC D,3Ir.DC D}

Neither of the two contains any axioms that are entailed by the remainder of the on-
tology. There are also no sub-expressions that can be removed. However, 73 is less
complex than 77, because C' C D is simpler (shorter) than 3r.C' C Jr.D.

While the above problem is already known to be non-tractable and can have many
solutions, the ability to rewrite axioms of the ontology can further increase the difficulty
and the number of possible solutions: While in the above cases a minimal ontology con-
tains only subconcepts sub(7) of the original ontology T, in general, a minimal ontol-
ogy can introduce new concept expressions as demonstrated in the following example.

Example 4. Consider the following TBox 7T
Ch1 C A Ay T Cs
dr.DC D ds.C1 C D
3s.C3 C 3r.(3s.Cy)

Assume that [(C) and [(C3) are large. Then the axiom 3s.Cy T D needs to be
exchanged by 3s.42 C D to obtain a smaller TBox. The TBox 7, given below is a
minimal representation of 7.

Ci C A Ay ECs
dr.DC D ds. A, T D
3s.C5 C 3r.(3s.Ch)

We notice that the original ontology 7~ does not contain the expression ds. Ay € sub(Ty, ).



We can conclude that considering subsumption relations between subconcepts sub(7)
of 7T is not sufficient when looking for a minimal equivalent representation. In the next
section, we show that the corresponding decision problem P1 is in fact NP-complete.

4 NP-Completeness

In this section, we first show the NP-hardness of the problem and then establish its NP-
completeness. We show NP-hardness by a reduction from the set cover problem, which
is one of the standard NP-complete problems. For a given set S = {51, 52,...,S5,}
with carrier set S = U;L:1 S;, acover C C S is asubset of S, such that the union of the
sets in C covers S, i.e., S = UCec C.

The set cover problem is the problem to determine, for a given set S = {51, S, . . .,
Sy} and a given integer k, if there is a cover C of S with at most k£ > |C| elements. We
will use a restricted version of the set cover problem, which we call the dense set cover
problem (DSCP). In the dense set cover problem, we require that

— neither the carrier set S nor the empty set is in S,

— all singleton subsets (sets with exactly one element) of .S are in S, and

— if a non-singleton set S is in S, so is some subset S’ C S, which contains only one
element less than S (]S ~\ S| = 1).

Lemma 1. The dense set cover problem is NP-complete.

Proof Sketch. For the full version of the proof, see extended version of the paper.
The proof shows how to convert the cover of the non-dense set into a cover of the
corresponding dense set and vise versa. ad
Given the above NP-completeness result, we show that the size of minimal equiv-
alents specified in P1 is a linear function of the size of the minimal cover. To this end,
we use the lemma below to obtain a lower bound on the size of equivalents. Intuitively,
it states that for each entailed non-trivial equivalence C' = A, the TBox must contain at
least one axiom that is at least as large as C’ = A for some C’ with T = C = C”:

Lemma 2. Let T be an EL TBox, A € sig(T) and C, D EL concepts such that T |=
C = A T | ALC D (the latter is required for induction). Then, one of the following
is true:

1. Ais a conjunct of C (including the case C = A);
2. there exists an EL concept C' such that T = C = C' and C"' 1 A € T or
C'< AN D €T for some<ic {=,C} and some concept D'

Proof Sketch. For the full version of the proof, see extended version of the paper. We
use the sound and complete proof system for general subsumption in ££ terminologies
introduced in [8] and prove the lemma by induction on the depth of the derivation of
C C AN D. We assume that the proof has minimal depth and consider the possible
rules that could have been applied last to derive C' = A M D. In each case the lemma
holds. ad



We now show how to encode the dense set cover problem as an ontology minimiza-
tion problem. Consider an instance of the dense set cover problem with the carrier set
A={B1,...,B,}, theset S = {Ay,..., A, {B1},...,{Bn}} of subsets that can
be used to form a cover. By interpreting the set and element names as atomic concepts,
we can construct Tspase as follows:

Tovase = {A" = ANB| A" A €S BeA A =AU{B},A" +A'}.

Observe that the size of Tspase is at least 3m. Clearly, Tsvase = Ai =[5 cA, B.
Let Ts = Tsvase U {A = [ |54 B}. We establish the connection between the size of
Ts equivalents and the size of the cover of S as follows:

Lemma 3. 75 has an equivalent of size [(Tsvase) + k + 1 if, and only if, S has a cover
of size k.

Proof. For the if-direction, assume that S has a cover of size k. We construct 7} of size
[(Tsvase) + k + 1 as follows: Tg = Tspase U{A =[] 4/cc A'}. Clearly, T = Ts.
For the only-if-direction, we assume that % is minimal and argue that no equivalent
T' € [Ts] of size < [(Tspase) + k can exist. Assume that 7 is a minimal TBox with
T € [Ts]. With the observation, that the m + n atomic concepts that represent elements
of & are pairwise not equivalent with each other or the concept A that represents the
carrier set, we can conclude that no two atomic concepts are equivalent. From Lemma
2 it follows that, for each A; with ¢ € {1,...,m}, there is an axiom C; = C} € T or
C; T Cl € Tsuchthat 7 |= C; = A; and A4, is a conjunct of C! or A; = C!. Since
there are no equivalent atomic concepts and C; # A; due to the minimality of 7, the
size of each such axiom is at least 3 and none of these axioms coincide. Additionally,
since Ts = A; T A, A cannot occur as a conjunct of C; or as a conjunct of CJ;
Finally, we estimate the size of the remaining axioms and show that their cumulative
size is > k. It also follows from Lemma 2 that there exists an axiom C = C’ € T or
CCC' € Tsuchthat T = C = A and A is a conjunct of C' or A = C'. Tt
holds that 7 = C =[]z 4, B. We also know that for no proper subset S" C A holds
TET] Best BE C'. Thus, we have found a cover of S and the size of the axiom must
be > k + 1. Thus, the overall size of 7 must be > [(Tspase) + &k + 1. O

Theorem 1. P1 is in NP.

Proof. We ask the non-deterministic algorithm to guess a TBox of the size < k. It
remains to verify 7’ = 7, which can be done in PTIME [7]. O

Theorem 2. P1 is NP-complete.

Proof. The problem is NP-hard as an immediate consequence of Lemmas 3 and 1.
Given the result of Theorem 1, we establish NP-completeness of the problem. a

5 Minimizing Acyclic TBoxes

In this section, we develop an algorithm for minimizing TBoxes in polynomial time,
which is guaranteed to provide a minimal TBox for a class of ££ TBoxes satisfying a
certain type of acyclicity conditions. The algorithm can also be applied to more expres-
sive and some cyclic TBoxes, however without the guarantee of minimality.



5.1 Acyclicity Conditions

In this subsection, we introduce equivalence classes on concepts and discuss cyclic
dependencies between equivalence classes and their impact on computing minimal rep-
resentations. Let 7 be an ££ TBox and let C' be a concept in sub(7). We use the
notation [C]7 = {C’ € sub(T) | T | C = C'} to denote the equivalence class of the
concept C and C1 = {[C]7 | C' € sub(T)} to denote the set of all equivalence classes
over the set sub(7). In case T is clear from the context, we omit the index. We base
the acyclicity conditions on the following reference relations, which use both syntactic
and semantic dependencies between equivalence classes:

Definition 3. Let T be an EL TBox. The reference relations <, <5 and <, all sub-
sets of C x C, are given as follows:

- [C] <5 [C'] if, for some Cy € [C],C2 € [C'], it holds that Cy occurs in C1;

- [C] <c [C'] i, for some C1 € [C],Cy € [C'), it holds that [C1] <, [C2] or
T ): Cl E CQ,’

- [C] =g [C] if;, for some Cy € [C],Cy € [C'], it holds that [C1] <, [C2] or
TEC 3C,.

We call a TBox cyclic, if any of the above relations <, <3, < is cyclic. We say
that a TBox T is strongly cyclic if < is cyclic. The algorithm presented in this paper
is applicable for TBoxes not containing strong cycles. Most of the large bio-medical
ontologies including Galen, Gene Ontology and NCI do not contain strong cycles. This
was also the case for earlier versions of SNOMED, e.g., the one dated 09 February
2005 [9]. Note that asking for the absence of cycles in < is a weaker requirement than
for < or <3, as <,C < N <g. But the reverse relationship between the conditions
holds.

In some cases, TBoxes contain cycles that are caused by redundant conjuncts and
can easily be removed.

Example 5. {AN B C C,A T B} has a cyclic <3 relation due to a cycle between
A B and A. It can be transformed into an acyclic TBox {A C C, A C B}.

We call conjunctions C’ 1 C” in sub(7) such that 7 = C' T C” subsumer-
containing conjunctions. We can easily eliminate subsumer-containing conjunctions
in TBoxes before applying the algorithm: for each subsumer-containing conjunction
C'NC”" in sub(T) with T |= C" C C”, we replace C' 11 C” in T by C’, and
add the axiom C' C C” to T. We can show that the closure of each equivalence
class [C] of an acyclic TBox 7 is finite if we exclude subsumer-containing conjunc-
tions. We denote such a closure with [C]* = {C" | T E C = C’ and C' is not a
subsumer-containing conjunction}. We denote the extended set of subconcepts of T by
sub(T)" = Ujcjec[C]™

Another kind of removable cyclic dependencies are conjunctions on the right-hand
side. We use a simple decomposition, in which all conjunctions on the right-hand side
of axioms are replaced by separate inclusion axioms for each conjunct. We obtain the
decomposed version 7’ of a TBox T by replacing each C T D; M Dy € T, by
C C D;,C C D5 until a fixpoint is reached. Composition is the dual transformation:



we replace any two axioms C' C D1,C C Dy by C' C Dy M D5 until a fixpoint is
reached.

Unless we state otherwise, in the following we assume that TBoxes are decomposed
and do not contain subsumer-containing conjunctions.

5.2 Uniqueness of Minimal TBoxes

Acyclic TBoxes are better behaved not only with respect to the complexity of mini-
mization, but they also have a unique minimal TBox modulo replacement of equivalent
concepts by one another (if we assume that the TBox with the lower number of equiva-
lence axioms should be preferred in case of equally large TBoxes).

To be able to determine a unique syntactic representation of a TBox 7, we choose
a representative C’ € [C]* for each equivalence class [C] € C and denote it using the
representative selection function r : C — sub(T)* with 7([C]) = C’. We say that r is
valid, if for all [C], [D] € C with [C] # [D] it holds that C' € [C]* occurs in r([D])
only if ¢’ = r([C]), i.e., representatives can only contain other representatives, but not
other elements of equivalence classes.

Definition 4. Let T be a TBox and <€ {=, C}. We say that T is aligned with r, if for
each C'>1 D € T one of the following conditions holds:

- if T £ C =D, then C = r([C]) and D = r([D)]);
— if T = C = D, then for each C' such that C' # C, C' # D and C' occurs in C
or D it holds that C" = r([C"]).

In other words, the only axioms, in which we allow an occurrence of a non-representative
C are axioms relating C' with concepts equivalent to it.

Since minimal TBoxes can sometimes contain subsumption axioms relating two
equivalent concepts with each other, the otherwise unique TBox result can vary in the
choice between subsumption and equivalence axioms. For the sake of uniqueness, we
assume that, whenever we have a choice between equivalence (=) and subsumption
axioms (E) in the resulting TBox, we prefer subsumption axioms.

We call a TBox non-redundant, if there is no o € T such that 7\ {a} |= «. In order
to show how to compute a minimal equivalent TBox for an acyclic initial TBox, we first
show that we do not need new equivalence classes or new relations between them to ob-
tain any non-redundant, decomposed, equivalent TBox. In other words, non-redundant,
decomposed axioms encoding relations between equivalence classes are unique up to
exchanging equivalent concepts.

Lemma 4. Let T, T be two non-redundant, acyclic £L TBoxes such that T, = Ts.
Let CC D € Ty. Then thereis C' T D' € Ty suchthat T =C'=C, Ty = D' = D.

While the above lemma addresses relations between equivalence classes in non-
redundant, decomposed TBoxes, it does not allow us to draw conclusions about axioms
representing relations within equivalence classes. The purpose of the below lemma is
to determine the part of the TBox that encodes relations between equivalent concepts
within equivalence classes. For this, we divide the TBox into partitions: one for non-
equivalence axioms 7% = {C' C D € T | T = C = D} and one for axioms encoding



relations within each equivalence class: 711 = {C'= D € T | C, D € [C"]} for each
[C'] € C. We denote the set of all subsumption dependencies holding within a partition
by 7Tl = {C' € D | C, D € [C']}. In each (equivalence class) partition, a part
of dependencies can be deducible from the remainder of the TBox.

Example 6. Consider the TBox T = {A C B,3r.A = 3r.B}. For the equivalence
class {3r.A, 3r. B}, the subsumption Ir.A C Ir.B follows from A C B.

We denote entailed dependencies for an equivalence class [C’] by T=%[¢'] = {C C
D | C, D e [C"]}. We now consider alternative representations of each partition 71",
We first show that, in any acyclic TBox 7 aligned with some valid r, we can determine
the entailed dependencies 77°%C] within each 72:(C"] based on 7.

Lemma 5. Let T be a non-redundant, acyclic £L TBox aligned with a valid represen-
tative selection function r. Then, for each non-singleton equivalence class [C'] € C(T)
and each pair C,D € [C'], it holds that C = D € T=%C) exactly if one of the
following conditions is true:

1. D=T
2. there are concepts C', D' such that C = Ir.C',D = Ir.D' and T = C' C D/,
TEC =D

As a consequence, each equivalence class partition can be considered independently
from other equivalence class partitions. In particular, this implies that, for any syntactic
representation 7] of a partition for equivalence class [C'], we can obtain 7L, [C]

from 711 U 774[C] by computing its transitive closure *.

Lemma 6. Let T be a non-redundant, acyclic €L TBox aligned with a valid represen-
tative selection function r. Then, for each equivalence class [C] € C(T) it holds that

(T[C] U Tred,[C])* _ Tfull,[C'].

Since our implementation operates on ontologies represented in the OWL Web On-
tology Language, we consider here an important detail of this language. In addition
to constructs mentioned in preliminaries, OWL Web Ontology Language allows for
OwlEquivalentClassesAxioms - axioms, in which we can specify a set of equivalent
concepts. With the exception of equivalence classes containing T, for which there ex-
ists an equally small representation without an OwlEquivalentClassesAxiom, this is
clearly the smallest representation for equivalence class partitions.

Let [O]vred = [O] ~ {C’ € [O] | C' C D} and C" J D}y € T*%IC] for
some D}, Dy}. Let T27re4[C] be the corresponding OWLEquivalentClassesAxiom
with [C]*°rred a5 the set of equivalent concepts. Note that, according to the seman-
tics of OwlEquivalentClassesAxioms it holds that T“°“red’[c] = TEALICT Thys,
7'nonred [C] U Tred [C] ': Tfull Note that f(Tnonred ) _ ZC’e[C]DOMEﬂ f(Cl)

Lemma 7. Let T be a non-redundant, acyclic £L TBox aligned with a valid represen-
tative selection function r. Then, [(T**°%[Cl) < [(TIC) for each equivalence class

[C] € C(T).

* For a set T of axioms, the transitive closure (7)* is obtained by including C' C D for any
C, D such that there exists C’ with 7 = {C C C',C’ C D}.



Algorithm 1: Rewriting 7;,

Data: 7, acyclic decomposed TBox

Result: 7.,¢ minimal equivalent TBox

Can1 <+ C;

Cropo = Cann;

Tous — remove equivalence axioms from 7in;

while CTOD[] 7é @ do

for [C] € leaves(Cropo) do
choose minimal representative r([C]);
replace C’ € [C] in Tous by 7([C]);
replace C’ € [C] in Crono \ {[C]} by 7([C]);
replace C' € [C] in Can1 \ {[C]} by r([C));
Cropo — Crono \ {[C}},

RN - 7 T S T R

=
=5

1 7o + Ugrecacnze T
12 for o € Tout do

13 if Towe UTe \ {a} = « then
14 L 77)ut — 7:;ut \ {a}s

15 Tour < Touwe U Te
16 Tour < compose(Tout);

Based on the above two lemmas, we can show that, in the acyclic case, we can com-
pute a minimal TBox by eliminating redundant axioms, fixing the representative selec-
tion function 7 to some minimal value, constructing the core representation Jmonred,[C]
for each non-singleton equivalence class [C] and composing T again.

Definition 5. Let T be an EL TBox and r a corresponding valid representative selec-
tion function. We say that r is minimal, if for each [C] € C holds: there is no C € [C]*
such that [(C) < [(r([C])).

We can now state the minimality of the composed TBox containing 7° and a parti-
tion 72°7¢4[C] for each non-singleton equivalence class [C] € C.

Theorem 3. Let T be a non-redundant, acyclic EL TBox and r a minimal, valid rep-
resentative selection function. Let the TBox T,, = T° U U[C] ec|[C]]>2 Tronred[C] pe
aligned with r. Let T, be a composed version of Ty. Then, for any minimal TBox T,

with T, = T it holds that [(Tm,) = [(T,)).

Algorithm 1 implements the iterative computation of r and the minimal TBox 7,..
It takes an acyclic decomposed TBox 7;, and computes the corresponding minimal
equivalent TBox 7ou¢. Line 3 is not strictly necessary, but allows for a more efficient
processing. In Lines 4-10, a minimal representative selection function r is iteratively
determined — for one equivalence class at a time — and all data structures are aligned
with . We distinguish two versions of equivalence classes: Crgpg contains equivalence
classes, for which the minimal representative has not been selected yet. In each iteration,
we process the leaves in Crgpg ordered with the reference relation <, and remove those



equivalence classes from Crgpg. Ca11 contains all equivalence classes that are stepwise
aligned with a minimal representative selection function r. In each step, we also align
axioms 7oy corresponding to the partition 70 with 7 by replacing concepts with the
representative ([C]) fixed in Line 6.

In Line 11, we build partitions for non-singleton equivalence classes. In Lines 12-
14, we compute the non-redundant part of Tg,.. The function compose(75y:) in Line
16 composes subsumption axioms with identical left-hand sides into a single axiom.

Clearly, Algorithm 1 runs in PTIME. sub(7) is polynomially large in the size of T
and C can be computed in PTIME due to tractable reasoning in £ L. Equivalence axioms
can be removed in linear time. Lines 4-10 are executed |C| times and can be executed
in PTIME. The same holds for building partitions for non-singleton equivalence classes
and computing the non-redundant part of 7,,+. Composition can be performed in lin-
ear time. Note that the algorithm remains tractable only assuming the tractability of
reasoning in the underlying logic. Otherwise, the complexity of reasoning dominates.
In principle, the result could be obtained after computing the representatives for each
equivalence class by simply selecting all subsumption relations between classes. How-
ever, this would result in a less efficient implementation with large intermediary results.

Theorem 4. Let T be an acyclic £L TBox. Algorithm 1 computes a minimal equivalent
TBox in PTIME.

Minimality is a consequence of Theorem 3. Equivalence follows from 7memred[C]
Tred[Cl |2 TELIC] for each non-singleton equivalence class [C] and from Lemma 4.

6 Experimental Results

For our evaluation, we have implemented the algorithm using the latest version of OWL
API and Hermit reasoner. We have used an optimized version of Algorithm 1, where
entailment checking is done in two phases, the first of which can be run by several
threads.

A selection of publicly available ontologies (as shown in Table 1) that vary in
size and expressivity have been used in the experiments>. Table 2 shows the number
|CON,(7)| of occurrences of complex concepts CON(7) = sub(7) \ sig(7) in the
first two columns (the original value followed by the new value relative to the original
one). The two subsequent columns show the number of pairwise different complex con-
cepts |CON(7")|. The last two columns show [(7) — the size of each ontology measured
as the number of occurrences of entities in sig(7).

The implementation was first applied to Snomed [10]. However, the available fully-
fledged reasoners Pellet and Hermit run out of heap space when classifying the ontol-
ogy even with 10 GB memory assigned to the corresponding Java process. The ELK
reasoner [11] is capable of classifying Snomed, but it does not currently implement
entailment, which is essential for our implementation.

5 The wine ontology can be retrieved from http://www.w3.0org/TR/2003/ PR-owl-guide-
20031209/wine. All other ontologies used can be found in the TONES ontology repository
at http://owl.cs.manchester.ac.uk/repository



|71 TJDO/TT ] con(T)/IT]] cono(T)/IT]] Logic |

Snomed 83,259 4.99 1.14 2.57 EL++
Gene Ontology 42656 3.37 1.20 0.27 EL 4 4
NCI 97811 1.10 0.00 0.14 ALCH(D)
Galen 4735 2.81 0.52 1.13 ALEHIF+
Adult Mouse 3464 2.48 0.15 0.48 EL++
Wine 657 1.03 0.21 0.40 SHOIN (D)
Nautilus 38 2.18 0.29 0.40 ALCHF (D)
Cell 1264 2.16 0.09 0.16 EL++
DOLCE-lite 351 1.42 0.13 0.14 SHIF
Software 238 25.21 2.60 7.26 ALHN (D)
Family Tree 36 6.19 1.02 1.33 SHIN (D)
General Ontology 8803 0.48 0.03 0.03 | ACCHOZN (D)
Substance 609 2.33 0.22 0.36 ALCHO(D)
Generations 38 1.87 0.58 1.21 ALCOLF
Periodic Table 58 1.38 0.38 0.43 ALU

Table 1. Properties of ontologies used in experiments.

From the ontologies used in our experiments, only Snomed did not satisfy the
acyclicity conditions for < sufficient to guarantee termination of our algorithm. On the
one hand, Snomed contains cyclic concept definitions. For instance, Mast_cell_leukemia
is defined by means of the corresponding equivalence axiom as

Leukemia_disease [1
Mast_cell malignancy [
JRoleGroup.
(FAssociated morphology. Mast_cell_leukemia [
JFinding site. Hematopoietic_system_structure))
JRoleGroup.(

JHas definitional manifestation.White blood cell finding)

On the other hand, Snomed contains a cyclic reference relation between the concepts
Wound and Wound_f inding, which is the only cyclic dependency with more than one
element.

We have manually evaluated how the rewriting has affected ontologies. In all cases
where concepts became smaller, the improvement has been achieved by either elimina-
tion of redundant axioms or exchanging complex expressions by atomic concepts.

In case of the Galen ontology [1], the algorithm managed to reduce the number
of occurrences of complex concepts by 955, which is 17%. The size of the ontology
in number of references was reduced by 1130 (9%). The number of distinct complex
concepts used in the ontology was reduced by 76 (3%). The situation is similar for the
NCI [12] ontology.

The other large medical ontology — Gene Ontology [13] — does not contain any
equivalent concepts, i.e., each equivalence class has only one element. The current al-



CON.(T) | [CON(T)[ | M ]

Snomed 213,856 - 195315 — | 415,541 -
Gene Ontology 11,686 1] 8,508 1 | 143,900 1
NCI 13,961 0.87 | 4,000 0.99 | 107,841 0.94
Galen 5,368 0.83 | 2,475 0.97 | 13,285 0.91
Adult Mouse 1,649 0.99 507 1 8,575 0.99
Wine 262 0.89 141 0.98 677 0.93
Nautilus 15 1 11 1 83 0.86
Cell 206 0.87 114 0.96 2,732 0.96
DOLCE-lite 49 0.92 46 0.98 497 0.66
Software 1,728 0.81 620 1 6,001 0.81
Family Tree 48 0.77 37 0.78 223 0.83
General Ontology 281 0.83 278 0.83 4,182 0.83
Substance 221 1 135 1 1,417 0.95
Generations 46 0.65 22 1 71 0.90
Periodic Table 25 1 22 1 80 1

Table 2. Minimization results for different ontologies.

gorithm did not find any possibility to rewrite the ontology. The same holds for Adult
Mouse and Periodic Table ontologies.

Results for the other, relatively small ontologies are similar to those of Galen and
in some cases more prominent (Table 2). The highest improvement (66% of [(7T)) was
achieved in the DOLCE-Lite ontology [14].

7 Related Work

The work on knowledge compilation [15] is closely related to the work presented in
this paper. Knowledge compilation is a family of approaches, in which a knowledge
base is transformed in an off-line phase into a normal form, for which reasoning is
cheaper. The hope is that the one-off cost of the initial preprocessing will be justified by
the computational savings made on subsequent reasoning. One of such normal forms
proposed in description logics is the prime implicates normal form for ALC ontolo-
gies [4]. Prime implicates of a logical formula are defined to be their strongest clausal
consequences. Concepts in the prime implicates normal form are expected to be easier
to read and understand. Reasoning is also expected to be more efficient for knowledge
bases in this normal form. For example, concept subsumption can be tested in quadratic
time. However, the problem with such normal forms is the blowup caused by the trans-
formation. For ALC ontologies, a doubly-exponential blowup in the concept size can
occur. Given that reasoning in ALC is PSPACE-complete [16], such a transformation
can be disadvantageous in general.

Grimm et al. [3] propose two different algorithms for eliminating semantically re-
dundant axioms from ontologies, which is one of the sources of non-succinctness. How-
ever, as shown in Section 3, it does not guarantee that we obtain a minimal TBox in
[(JT). The advantage of this restricted approach to improving succinctness is that the
result contains only axioms that are familiar to the users of the ontology.



Work on laconic and precise justifications [17] (minimal parts of the ontology im-
plying a particular axiom or axioms) is also related to this paper. The authors propose
an algorithm for computing laconic justifications — justifications that do not contain
any logically superfluous parts. Laconic justifications can then be used to derive precise
justifications — justifications that consist of flat, small axioms, and are important for the
generation of semantically minimal repairs.

Nikitina et al. [18] propose an algorithm for an efficient handling of redundancy in
inconsistent ontologies during their repair. Similarly to the approach by Grimm et al.
axioms are considered as atoms that cannot be further separated into parts.

8 Summary and Outlook

We have considered the problem of finding minimal equivalent representations for on-
tologies expressed in the lightweight description logic £L. We have shown that the task
of finding such a representation (or rather: its related decision problem) is NP-complete.
Further, we have identified a class of TBoxes for which the problem is tractable. We
have implemented a polynomial algorithm for minimizing the above class of TBoxes.
For general TBoxes, the algorithm can be used as a heuristic. We have implemented the
algorithm and presented experimental results, which show that the complexity of vari-
ous existing ontologies can be improved. For instance, in case of Galen, the number of
complex concepts occurrences could be reduced by 955 and the number of references
to atomic concepts and roles by 1130.

There are various natural extensions of this work. Inspired by recent results on uni-
form interpolation in £ [8], the problem can be extended to finding minimal represen-
tations for ontologies using a signature extension. The results in [8] imply that, even for
the minimal equivalent representation of an ontology, an up to triple-exponentially more
succinct representation can be obtained by extending its signature. Auxiliary concept
symbols are therefore important contributors towards the succinctness of ontologies,
e.g., used as shortcuts for complex £L concepts or disjunctions thereof. The results of
our evaluation indicate that there are many complex concept expression that occur re-
peatedly in ontologies but do not have an equivalent atomic concept that could be used
instead. Therefore, introducing names for such frequently used concepts could yield a
further decrease of the ontology’s complexity.

The results obtained within this paper can be transferred to the context of ontology
reuse, where rewriting is applied to obtain a compact representation of the facts about
a subset of terms [19], in particular in its extended form as suggested above.

Finally, minimizing representations is an interesting problem for knowledge repre-
sentation formalisms in general, and similar questions can (and should) be asked for
more expressive ontology languages.
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