
ProSWIP: Property-based Data Access for

Semantic Web Interactive Programming

Silviu Homoceanu, Philipp Wille and Wolf-Tilo Balke

Institute for Information Systems,

Technische Universität Braunschweig, Germany

Abstract. The Semantic Web has matured from a mere theoretical vision to a

variety of ready-to-use linked open data sources currently available on the Web.

Still, with respect to application development, the Web community is just start-

ing to develop new paradigms in which data as the main driver of applications

is promoted to first class status. Relying on properties of resources as an indica-

tor for the type, property-based typing is such a paradigm. In this paper, we in-

spect the feasibility of property-based typing for accessing data from the linked

open data cloud. Problems in terms of transparency and quality of the selected

data were noticeable. To alleviate these problems, we developed an iterative

approach that builds on human feedback.

1 Introduction

The amount of data available on the Web has considerably increased in the last few

years. Despite huge efforts in the area of the Semantic Web to make such web data

machine-processable, only a few applications have been developed that can take full

advantage of this data. Besides the general sparseness of semantic data, this behavior

is currently explained by the different representation formalisms of semantic data and

application programming languages causing a problem of data-model/programming

language interoperability. Most semantic data stores provide data in Resource De-

scription Framework (RDF) graphs or ontologies represented in the OWL Web On-

tology Language. Accessing such data from state-of-the-art object oriented (OO) pro-

gramming languages requires mappings from entities and ontology categories to pro-

gramming structures like classes. Fortunately, similarly to Object Relational Mapping

(ORM) [1] for relational databases, there are frameworks available that map RDF

and/or OWL to programming structures by means of textual code generation. Well

known frameworks include Jena [2] and RDFReactor [3].

However, generated code is often unintelligible, hard to customize and almost im-

possible to maintain. While some frameworks make customization and maintainabil-

ity more convenient by including support for IDEs, compile-time meta-programming

[4] represents a better technique to cope with the interoperability problem. With com-

pile-time meta-programming, developers can programmatically generate required

classes instead of providing them directly into the source code. One such approach

was recently presented by Microsoft as a feature of F# 3.0 (http://msdn.microsoft.com

http://msdn.microsoft.com/en-us/library/hh156509.aspx

/en-us/library/hh156509.aspx). Called type provider, it’s a component providing

types, properties and methods for an external data source without having to write

these types manually for each application. Type providers seem promising for access-

ing data from single data stores. But because each data source may have its own vo-

cabulary, an RDFS type provider for the Linked Open Data cloud (LOD) would be

useless without proper cleansing. With no global ontology to drive the cleansing and

alternative solutions like automatic ontology alignment offering just average quality,

such a type provider would require manual mapping during application development.

When writing an application, software engineers have some mental representation

of “things” that are required for the application. It is common knowledge in cognitive

psychology (imported in information science [5]) that concepts take the place of

thoughts. They are represented through symbols (words, sounds, etc.), defined inten-

sionally by a set of properties, and extensionally by a set of entities. The goal in pro-

gramming with web data is to easily access the entities that correspond to a concept

the software engineer thinks of. This concept may easily be expressed by its symbol, a

word label. In the LOD cloud, entities are associated with concept labels by means of

the rdf:type property. Detrimental to our purpose, types are provided in different gran-

ularities, e.g., Movie, Animation, FrenchFilm, etc. We found about 1,700 entity types

for movies in the LOD cloud. Furthermore, for some entities, no type is provided. In

consequence, accessing entities through their type labels is difficult.

We believe that a property-based data access model as recently sketched in [6, 7] is

more suitable for programming with semantic data. The type information for such a

programming approach is given by properties: A type is defined by a set of required

properties, and every entity with at least those properties is part of that type. When

designing an application, during the data modeling phase, developers usually think in

terms of entities – no clear cut types, but concepts like Movie, Actor, etc. When writ-

ing code, these concepts are bound to properties which are required for the program

logic. This way, concepts are extended to a minimal intensional definition comprising

core properties (e.g. Movie ≡ {Title, Genre, Director}) required by the program. Simi-

lar to the case of structural subtyping or DuckTyping [8], this definition is used to

identify entities that belong to the concept (in this case all entities providing values

for Title, Genre, Director are considered to be Movies). We inspected the feasibility

of such a programming paradigm for accessing data from the LOD cloud. Our exper-

iments show that simple property-based data access can lead to selecting all kinds of

entities. For example Music, Video-Games, and Books were also selected when trying

to access Movies. The quality of the selected data is poor if properties describing the

intended concept are not well chosen. Based on this observation, we propose Pro-

SWIP (Property-based Semantic Web Interactive Programming), an approach which

empowers property-based data access while maintaining quality under control. Part of

a cloud-based centralized service for programming the Semantic Web, ProSWIP will

be accessible from IDEs by means of plugins. Starting from properties provided by

application developers, ProSWIP estimates the quality of the selected data and if nec-

essary, identifies additional properties that have high positive impact on the quality.

In an iterative process, it assists developers to extend the property-based type defini-

tions while checking that the extended definition still matches their intentions.

http://msdn.microsoft.com/en-us/library/hh156509.aspx

The contribution of this paper can be summarized as follows: An extensive inspec-

tion of the property-based paradigm’s feasibility for accessing data from the LOD

cloud; the presentation and evaluation of a quality metric enabling transparency for

this programming paradigm; and the presentation and evaluation of a property selec-

tion method for better data quality.

2 Property-based Data Access - Use Case

To assess the feasibility of the property-based paradigm for accessing data from the

Web, we conducted an experiment focused on developing applications related to

movies: When writing such applications developers rely on variables that represent

movie properties. These properties are used in the property-based paradigm as filters

so that all entities from the LOD cloud which have values for those properties are

considered to represent movies. By inspecting the selected entities to identify those

that actually are movies, we get an impression of the quality of the property-based

paradigm. But first, what are the properties developers require for programming ap-

plications concerning movies? We conducted an extensive analysis (involving about

6% of the pages on the Web) to find properties typically associated with movies.

Motivated by the improved Web visibility promised by rich snippets, application

developers started to adopt the vocabulary provided by schema.org to semantically

annotate data published on the Web. Schema.org was launched in 2011 as joint initia-

tive of major search engine providers like Bing, Google, Yahoo and Yandex to pro-

vide a unified set of vocabularies which web masters and application developers can

use to semantically annotate data published on the Web. The goal of the project was

to ultimately empower semantic Web search. Currently, schema.org provides a collec-

tion of 406 hierarchically built schemata for various concepts ranging from organiza-

tions, persons and events to creative works like movies, music or books. On average,

schemata comprise about 34 attributes representing properties of the corresponding

concepts. Movie (http://schema.org/Movie), with a total of 62 attributes, belongs to

the fewer schemata that are described in more detail. While any subset of these prop-

erties can theoretically be used by application developers to refer to the Movie con-

cept, some properties may be preferred: To establish which of the 62 properties are

mostly being used when referring to movies, we analyzed a crawl of 870 million web-

sites. Known as ClueWeb12 (http://boston.lti.cs.cmu.edu/clueweb12/) this Web crawl

is publicly available as a corpus and consists of only English language sites, which

have been crawled between February and May 2012. More than a year after sche-

ma.org was introduced, only about 1.56% of the web sites from ClueWeb12 com-

prised data that was annotated with schema.org. Overall, only 192 schemata out of

406 from schema.org were used for annotating data. On average, annotations com-

prised 4.6 properties. For movies, we observed about 40,000 annotations. In Table 1

we present a list of the properties most frequently used for annotating movie data. For

movies, annotations comprised on average 4.5 properties, with a minimum of 1 and a

maximum of 13 properties. These numbers are rather low considering that the Movie

schema comprises 62 properties. This observation is not particular to movies but has

been made for other schemata like events or organizations as well, indicating that the

property-based approach may suffer from under-specification.

Table 1: Top “Movie” properties (with frequency above 30%) from schema.org frequently

used for annotating movie data on Web pages from the ClueWeb12 corpus.

Property Movies annotated

with property

Title 78 %

Description 56 %

URL 44 %

Director 39 %

Genre 38 %

Actors 38 %

AggregateRating 33 %

Assuming that, in part, annotated data published on the Web surfaced as a result of

some Web application, most developers require on average 3 to 5 properties. These

properties are most likely the ones that have frequently been annotated. For the Movie

concept, the most probable property-based definitions are {Title, Description, URL},

{Title, Description, URL, Director}, etc.

According to the property-based paradigm, all entities from the LOD cloud ful-

filling these properties represent movies. We rely on the Billion Triples Challenge

2012 (BTC) dataset to represent the LOD cloud. BTC comprises about 1.4 billion

quads of the form (subject, predicate, object, source) crawled from major LOD data

stores like Datahub, DBpedia, Freebase, and others during May and June 2012. Enti-

ties and properties are provided as unique identifiers (URIs) in the quad subjects and

predicates respectively. Sources are not relevant for our approach and will be ignored

in this paper. The process of selecting data for a set of properties provided in natural

language works as follows: (i) Property URIs are identified for each property. For this

purpose, all subjects from tuples of the form (*, rdfs:label, p) are selected for each

property p (* is a wildcard that may be substituted by any URI). Synonym sets pro-

vided by WordNet or obtained through the owl:sameAs predicate are used to extend

the coverage of each property (more details in Section 3.1). (ii) With p’ as the URI of

each property p, the entities to be selected are the set of all distinct subjects s for

which there are tuples of the form (s, p’, *) in the BTC dataset (* is a wildcard that

may be substituted by any URI or literal). An overview of the selectivity for different

property sets is provided in Table 2(a). While Title, Description and URL are quite

general (1,5 million entities), Director, Actors and especially Genre significantly re-

duce the number of relevant entities.

Precision and recall are the standard measures for evaluating the quality of re-

trieved information or, in our case, the quality of selected entities. Precision is for our

scenario defined as the proportion of entities representing movies out of all selected

entities, while recall is defined as the proportion of selected movies out of all movies

present in the BTC dataset. Computing precision and recall is not trivial in this case

since it requires recognizing entities that are movies. As the rdf:type property connects

entities to different types that may be related to movies (e.g., Films, Animations,

FrenchFilms etc.), such types are difficult to automatically map to the Movie type

without a general movie taxonomy. Without claiming full completeness for this ex-

periment, we extracted from the BTC data set a list of movie types by bootstrapping

on a seed of movies from the Linked Movie Data Base (LMDB - linkedmdb.org/) and

manually inspecting the resulting types. More details about this process are presented

in Section 4. In total, we found 1,736 types expressing different kinds of movies. This

surprisingly large number is mostly due to the very fine classification provided by

YAGO. With these types we identified a total of 87,273 movies in the BTC dataset.

As shown in Table 2(b), the choice of properties has notable impact on the quality

of the selected entities: Precision increases from a mere 0.02 to 0.78 by adding one

single property to the definition of Movie. Precision values of 0.92 are possible if the

“right” properties are chosen. Recall is, with 0.3 for the first three most frequent prop-

erties, quite low. The main reason is the sparseness of the data. This becomes extreme

in the case of Genre with just a few movies having this property.

Table 2: Nr. of entities from the BTC data set fulfilling each property set (a). The correspond-

ing precision and recall values (b).

Property Set (a) Nr. of Entities

from BTC

(b) Precision /

Recall

{Title, Description, URL} 1,447,813 0.018/0.3

{Title, Description, URL, Director} 29,328 0.78/0.26

{Title, Description, URL, Director, Genre} 2,266 0.35/0.01

{Title, Description, URL, Director, Actors} 21,531 0.92/0.23

Overall, the property-based paradigm can lead to high quality/high precision entity

selection if properties are well chosen. A major obstacle in the process is the lack of

transparency: The application developer has no idea about the quality of the selected

entities. Properties belonging to the concept definition are mandatory and values for

these properties are required by the application. In consequence, none of the entities

missing on any of these properties can be used. But this has a high impact on recall.

Combined with the sparse nature of LOD, the more elaborate the definition, the

smaller the number of selected entities. In this paper we focus on improving the quali-

ty of the selection throughout precision first, by extending the concept definition with

a set of well chosen properties. We believe once high quality properties are found, we

can tackle the recall problem by building on structural similarity focused on the ex-

tending properties, but leave this as the subject of future work.

3 System Description

Starting from a property-based type definition with properties expressed in natural

language and a large collection of data representing facts from the LOD cloud, Pro-

SWIP helps the user to keep data quality problems under control: Relying on a meas-

ure of property-based data homogeneity, it measures the quality of the entities that

fulfill the property-based definition. If the quality is low, key properties contributing

the most to better data quality are found. The user has to finally decide if those prop-

erties are part of the type or not. The definition of the intended type is extended to

include the user feedback and the process is repeated until the quality reaches a satis-

factory level. For this purpose, the following functionality is required: i) identify and

select those entities that fulfill the property-based type definition, ii) compute the

quality of a collection of entities, iii) find properties that, if added to the set of proper-

ties defining the type, significantly improve the quality of the selected data.

3.1 Property-based Data Access

According to the property-based paradigm, the system selects all entities from the

LOD cloud having all properties from a given set. But in the LOD cloud, properties

are represented through URIs. Hence, a mapping between the properties in natural

language and the URIs is necessary. For this mapping, we rely on the rdfs:label prop-

erty, an instance of rdf:property providing a human-readable name for a resource. For

better coverage, each property is automatically extended beforehand with a list of

synonyms from WordNet.

Definition 1 (mapping): Given a property p Properties,
 its set of synonyms

from WordNet (including p) and LOD a large set of 3-tuples of the form (subject,

predicate, object), we define map as a function map : Properties → ℘(URIs) with:

 { |
 () (1)

For some entities the rdfs:label property may be missing. Furthermore, the same prop-

erty may be present in different data stores under different URIs, possibly connected

to each other through the owl:sameAs property. In consequence, in a dictionary-like

fashion, each property is actually mapped to a set of URIs all considered synonyms.

Mapping Expansion Algorithm:

With () define

 { | (
)

 ()

(2)

 () ⋃

(3)

By repeatedly linking elements through synonyms, two or more properties from the

definition set may end up being represented by the same set of URIs. This doesn’t

play any role in the process of selecting the appropriate entities but may surprise the

user when accessing values for these properties. Such cases are reported to the user.

At the very core of the property-based paradigm, an entity is relevant with respect

to a specific property if there is a statement or fact asserting that the entity has this

property. In the context of linked open data, we define the binary relevance of an

entity w.r.t. a property as a hit function:

Definition 2 (hit): Given some entity E represented by its URI, a property in

natural language p Properties and LOD defined as above, we define hit as a function

hit : (URIs × Properties) → {0, 1} with:

 () {
 () ()

 (4)

where * is a wildcard that may be substituted by any literal or URI.

According to the semiotic triangle from cognitive psychology [5], concepts are de-

fined intensionally by a set of properties, and extensionally by a set of entities. Aim-

ing for simple yet effective access to entities corresponding to a certain concept we

define conceptual variable types in the sense of programming, as a set of properties

that intensionally define a concept. This type definition may iteratively evolve based

on user feedback. Because the user feedback may be negative w.r.t. to some proper-

ties (by negative we mean properties that all entities corresponding to the concept

definitely shouldn’t possess), we define a type as follows:

Definition 3 (type): Given a concept c, extensionally defined through the set of enti-

ties given by their URIs, Ec, we define the type of concept c denoted Tc as the set of

properties Tc = with the set of positive properties and the set of nega-

tive properties (), such that:

() ()

() ()

() ()

(5)

While here all properties (initial as well as positive and negative extensions) are treat-

ed equivalently, the fact that not all properties extending the definition are required is

a starting point for future work. As in the case of properties, in the LOD cloud the

same entities may end up having multiple URIs. For the sake of simplicity, we refer to

one entity as being uniquely identified by an URI.

More often than not, the number of properties employed to refer to some type of enti-

ty is much smaller than the number of properties that would completely define the

entity type or intended concept. Actually, extensive experiments presented in Section

2 show that on average only 4.6 (out of an average of 34 existing) properties have

been used to link entities to concepts. This suggests that the developer provides a sub-

set of properties meant to represent the intended (to us hidden) type. This set of prop-

erties is one of the many possible super-types of the intended type. Starting from a

property set that builds a type or a super-type for some concept, all entities having all

these properties are selected as being relevant for the type or super-type:

Definition 4 (property-based data access): Given a set of properties Tc

representing either a type or super-type for a concept c as before, the set of entities

selected according to the property-based data access paradigm Ec is the set of entity

URIs that fulfill all properties from Tc:

 ⋂

| |

(6)

where { | () ()

In the ideal case, for a concept c the set of properties Tc is the type of c (not a super-

type). Then, the set of selected entities Ec also extensionally defines concept c and

should perfectly satisfy the user needs. However, there is a high probability that a

super-type is provided. Since the type intended by the application developer is hidden

to the system and entities have no clear types, there is no trivial way for checking if

the selected entities correspond to the intended concept. The developer also has no

feedback whatsoever regarding how good the selected entities match the intended use.

This has grave effects on the applicability of the property-based data access paradigm.

Aiming for better transparency of the whole approach, in the next section we intro-

duce a measure of quality for the selected entities.

3.2 Quality of the Selected Entities

We measure the quality of entities selected through the property-based model as a

function of entity homogeneity. The basic assumption is that the application develop-

er describes simple concepts (like “Movies” or “Books”) with all corresponding enti-

ties having the same or almost the same properties and not ad-hoc or composed con-

cepts (like “all things having a geo-location”). Consider for example that the develop-

er provides three properties: Title, Description and Genre. Based on these properties a

set of eight entities is selected. Besides the three properties, each entity is described

by other additional properties like in Table 3. Properties p4, p5 and p6 may be, for

instance, Duration, Actors and Director while p7, p8 and p9 could represent ISBN,

Pages and Editor. As you may have intuited, entities e1, e2, e3 and e4 represent movies

while the remaining entities represent books. Properties in the LOD cloud may be

missing. This is reflected also in this artificial example with movies e1, e3 and e4

providing no values for properties p4 and respectively p6. Analogously, for the entities

representing books. The rest of the missing values are attributed to the fact that prop-

erties p4, p5 and p6 are proper to movies while p7, p8 and p9 are proper to books.

More generally, starting from the set of properties, the system selects a set of enti-

ties as described in the previous section. In a relational sense, together with the union

of all their corresponding properties (stop properties like rdfs:label, owl:sameAs,

rdf:type, etc. are first removed) these entities form a relational schema (as in Table 3).

Especially in the field of schema extraction and discovery, the number of null values

has successfully been used for establishing the quality of the schema [9] – the better

the schema, the fewer null values, the more homogeneous the data. Thus, if the data is

homogeneous in terms of structure - their properties - these properties intensionally

define a single concept. As a measure of homogeneity we measure the property-based

Table 3. On rows - the entities that are selected for the properties set {p1, p2, p3}. On columns -

all properties that describe any of the selected entities.

similarity between all entities. But there is a problem: Entities may be selected from

different data sources (DBpedia, LMDB, etc.). Entities with the same type and from

the same source tend to share the same properties, usually due to the focus of each

data store. Different sources have different sizes, and small data sources with many

properties can introduce null values. These null values are artificially amplified by the

size of the data source. To handle this problem, we reduce all entities having the exact

same properties to just one witness. This way, for the example presented in Table 3, e3

and e4 are both represented by one witness: having the same properties as e3 or

e4. The same for e6 and e7. The rest are their own witnesses. Based on this observation

we define the quality of a set of entities as follows:

Definition 5 (quality): With the notations of Tc and Ec as above and Wc as the set of

witnesses represented by URIs of entities from Ec, the quality of the selected entities

is a function, Q : ℘(URIs) → [0, 1] with:

 ()

 ∑ ∑ ()

(7)

 Wc, n=|Wc| and ()
|

|

|

|
 is the Jaccard similarity index [10].

 is the set of properties of and

 is the set of properties of .

While the Jaccard index is most suitable for measuring structural similarity between

entities, any other similarity measure may be used here.

For the example introduced in Table 3, the quality of the selected entities is 0.55. If

additional information were provided, like the concept the application developer has

in mind also has property p5, or doesn’t have property p7, the entities selected by the

property based model restrict to movies only (entities 1 to 4). The quality in this case

increases to 0.78, the result being slightly affected by the noise (missing values) in the

data. In the following subsection we present how to find properties better separating

various types of entities in the result set.

p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9

e 1         

e 2         

e 3         

e 4         

e 5         

e 6         

e 7         

e 8         

3.3 Property Selection

Finding the list of properties best distinguishing different types is similar to the prob-

lem of induction of an optimal decision tree in data classification, which is a hard

task. It has been shown that finding a minimal decision tree consistent with the set of

labeled entities provided as data is NP-hard [11]. Consequently, greedy algorithms

like the C4.5 are applied for solving this problem [12]. When it comes to selecting

some property that better discriminates between different types of entities, infor-

mation gain from the field of information theory is the standard measure for deciding

the relevance of a property [13]. Generally speaking, the information gain is the

change in information entropy from a prior state to a state that takes some information

as given. Computing this entropy change is only possible for entities that have class

labels (entity types) attached. Types are provided in the LOD cloud by means of the

rdf:type property, however entities may have multiple types partly with different

granularities e.g., the movie “Gangs of NewYork” has types owl:Thing, sche-

ma.org/CreativeWork, dbpedia-owl:Film, yago:VictorianEraFilms and 15 other types.

For other movies, types owl:Thing, or schema.org/CreativeWork are missing. All these

types are obviously related to each other but without an upper ontology or global type

hierarchy, it’s difficult to make use of the type property to compute the information

gain.

But the type information strongly correlates with the entity properties [14]: In the

example presented in Table 3, it’s obvious that entities having properties Duration,

Actors and Director on top of Title, Description and Genre are movies while entities

having ISBN, Pages and Editor are books. The type information is latent in the prop-

erties. But the missing values for some entities, as well as the heterogeneity of data

sources make it difficult to fold all movies together to just one witness – a property

set representing the movie type. Actually what happens is that more witnesses, with

more or less similar properties, exist for a single type. The problem of reducing simi-

lar witnesses to a dominant type is similar to the problem of dimension reduction.

Principal component analysis (PCA) is the best, in the mean-square error sense,

linear dimension reduction technique [15]. In essence, PCA is a basis transformation

that seeks to reduce the dimensionality of the data by finding a few orthogonal linear

combinations (called principal components) of the original variables capturing the

largest variance. Given Ec the set of entities selected according to the property-based

data access paradigm, and Wc the set of witnesses of entities from Ec, let X be a n × p

matrix, where n and p are the number of entity witnesses and the number of properties

of all witnesses, respectively. Let the matrix decomposition of X be

 (8)

Y=UD are the principal components (PCs), where the p × p matrix U is the matrix of

eigenvectors of the covariance matrix , matrix D is a p × n rectangular diagonal

matrix of nonnegative real numbers on the diagonal with customary descending order,

and the n × n matrix V is the matrix of eigenvectors of . The columns of V are

called loadings of the corresponding principal components. Usually the first PCs (cap-

turing the highest data variance) are chosen to represent the dominant dimensions.

For the example introduced in Table 3 (first all data is reduced to binary values

and centered on the columns such that the mean of each column is equal to 0), the

first PC shows the strongest variance of 1.16. The next two components show a vari-

ance of 0.2 and the rest are 0 or close to 0. With respect to the properties, the coeffi-

cients of the first PC are clustered together according to their variance (Table 4). For

this example, the three property clusters that build on the most significant PC show

the existence of two dominant types that differentiate in terms of properties p4, p5, p6

and p7, p8, p9. Showing no variance, properties p1, p2 and p3 can be ignored since they

belong to both dominant types.

Table 4. Property coefficients of the first three PCs.

In general, depending on the selected entity set, more PCs may be significant. To

dynamically establish which of them show significant variance, we rely on the

ISODATA algorithm, an automatic thresholding approach [16] that identifies thresh-

olds in one dimensional spaces that best separate a set of data points. With the PCs

that show variances above the threshold, one dimensional clusterings (agglomerative

hierarchical clustering with average inter-cluster similarity) on the coefficients are

built for each PC. This way each property is assigned to one cluster for each signifi-

cant PC. Each set of properties belonging to the same clusters on all significant PCs

are grouped together and represent abstract dominant types we will further refer to as

latent types. For the example in Table 4, considering that only PC1 is significant, the

extracted latent types are t’ ≡ {p1, p2, p3, p4, p5, p6} and t’’ ≡ {p1, p2, p3, p7, p8, p9}.

With these types we can now label entities according to the property-based model.

This way, e2 will be labeled with t’ and e5 with t’’. For the future, we plan to intro-

duce a probabilistic approach to increase the labeling recall, but for now all entities

missing some values are ignored in the typing process. In this manner a set of labeled

entities is created. Entities that fulfill properties for multiple types (Audiobooks in the

context of our example) are automatically associated with multiple labels.

With the set of labeled entities, the information gain for a property can be comput-

ed as follows:

Definition 6 (information gain): With the notations of Tc and Ec as previously de-

fined and the set of all properties of all entities from Ec, the information gain of a

property w.r.t. the entity selection Ec is:

 () () ∑
| |

 |

| |
 (|

)

 {

 (9)

 PCs

Props. PC1 PC2 PC3

p1 0.00 0.00 0.00

p2 0.00 0.00 0.00

p3 0.00 0.00 0.00

p4 0.35 -0.71 0.00

p5 0.50 0.00 0.00

p6 0.35 0.71 0.00

p7 -0.50 0.00 0.00

p8 -0.35 0.00 0.71

p9 -0.35 0.00 -0.71

where |
 { | () .

The entropy (denoted H) represents a measure of the amount of uncertainty in the data

and is usually computed as follows:

 () ∑ () ()

 (10)

where n represents the number of latent types and p(t) represents the probability (rela-

tive frequency) of latent type t in .

However in our case, an entity may have multiple types. Known as the multi-label

learning problem, this poses difficulties for most learning and classification methods.

The information gain - entropy based approach from the C4.5 decision tree algorithm

is no exception [17]. To overcome this problem, we employ a modified version of the

entropy proposed in [18] that considers multiple labels by introducing the probability

of an entity not belonging to a certain type:

 () ∑((() ()) (() ()))

(11)

with n and p(t) as before and q() = 1 – p() the probability of not having type .

4 Evaluation

The approach we present in this paper has two major objectives: To provide transpar-

ency regarding the quality of the data accessed through the property-based paradigm

and to improve the quality of the selected data by iteratively, and with user feedback,

extending the property-based type definition with chosen properties. To evaluate how

well these objectives have been fulfilled we performed the following experiment:

Starting from different concepts presented in structured form with schemata on sche-

ma.org, as in the use case presented in Section 2, we build an initial type definition for

each concept. This initial definition embodies typical properties most application

developers require in order to program with each concept. It comprises the first four

properties that have been most frequently annotated in ClueWeb12 for the corre-

sponding schema.org schemata. The property-based data access is applied to these

four properties and a set of entities from the BTC data corpus is selected. The quality

score, precision and recall are computed for the selected entities. If the quality score is

lower than 0.65 (our experiments have shown that a threshold of 0.65 brings satisfy-

ing data quality), a property is chosen based on its information gain. The user is asked

whether this property belongs to the concept or not. We simulate the user feedback by

relying on information from schema.org: If the property with the highest information

gain is part of the schema that describes the corresponding concept on schema.org

(considering synonymy), then the user feedback is positive. The type definition for

the concept is in this case extended with this property and all entities having this

property are kept. If, however, the property with the highest information gain is not

part of the schema, then it is considered a negative property and all entities not having

this property are kept. The process is repeated until the quality score reaches the

quality threshold. Using schema.org to simulate user feedback is convenient but it has

some drawbacks that will be addressed in future work: Some properties that are part

of schema.org may be irrelevant from a human perspective. At the same time, sche-

ma.org doesn’t claim full completeness. In consequence one can’t be sure that proper-

ties not being part of schema.org are negative properties.

In order to measure precision and recall, a gold standard is required. The gold

standard represents, in this case, clear type information w.r.t. the concepts: In the

context of movies, is a given entity a movie or not? We build the gold standard by

bootstrapping on a set of 1000 seed entities that we know are of the concept type: We

extract all rdf:type types for each of the seed entities. On average, about 500 types are

found. Types that are not related to the concept or that are too general (e.g. owl:Thing

or schema.org/CreativeWork) are manually pruned. In a second iteration, all entities

having those types are selected and 100 entities are randomly chosen. Only those

entities that, on manual inspection show the correct type are kept. Their rdf:type types

are extracted, and unrelated or general types are again manually pruned. The process

is repeated one more time. The resulting list of rdf:type values represents the descrip-

tion of a concept type according to the rdf:type property. Any entity that has one of the

types in the list is considered to be of the respective type. Of course, only a subset of

the actual expressions of a certain type is found. As a result, the precision and recall

values computed on this gold standard underestimate the actual values.

Our system chooses key properties to improve the type definition based on infor-

mation gain. As a baseline, we built Rand, a system choosing properties at random

(without replacement). The randomization process is repeated 10 times for each prop-

erty selection step. Average quality, precision and recall values are considered for

each iteration. The property that is closest to the average scores of all 10 random

picks is chosen to extend the definition for the next iteration.

We evaluated ProSWIP on multiple concepts from various fields, with different

characteristics. For brevity reasons, in Table 5 we present the results on the example

of three chosen concepts. The base iteration (0) is common to both systems and corre-

sponds to the most frequent four properties used for annotating the corresponding

schema in ClueWeb. For Movie, this iteration already produces good precision but it

is quite restrictive in terms of recall. ProSWIP requires in this case 4 iterations to

reach quality above 0.65 and perfect precision. With 0.93, precision is already very

good after the first iteration. Further iterations isolate well defined movies from the

ones with missing values. This in turn affects recall. Benefitting from high quality

entity selection from the base iteration (78% of entities selected from the start are

movies), the random approach is also able to obtain good results. Primarily guided by

average scores and with high quality semantic feedback, the baseline method achieves

0.95 precision and a quality score of 0.59 after 4 iterations. Recall however is severely

affected by the random choice of properties. For Music the base iteration is, with a

precision of 0.44, of lower quality. Various types of entities are selected. The proba-

bility for the random selector to choose some irrelevant property is higher in this case.

This is also reflected in the poor performance of Rand for Music. In contrast, Pro-

SWIP achieves the desired level of quality after only two iterations. For Books, the

base also has low precision with negative consequences on the performance of Rand.

The quality metric we introduced is highly correlated to precision on all experiments

(Pearson’s linear correlation coefficient of 0.94) denoting its expressiveness for the

quality of the data selection. Precision rapidly increases towards values above 90%,

showing the success of the whole approach.

Table 5. Quality, Precision and Recall for three chosen concepts and multiple iterations.

From a technical perspective, ProSWIP is a component implemented in Scala

(www.scala-lang.org/), which maps variable names to properties from the BTC data

set. While classical relational databases are not suitable for querying on RDF data,

graph databases like Neo4j (www.neo4j.org/) have limited performance for our ap-

proach. In comparison, Lucene (lucene.apache.org/) has proven much faster in both

the time needed for initially loading the data (building the index) as well as in terms

of querying. With an off-the-shelf commodity computer with Intel I5-3550 quad-core

CPU with 3.3 GHz. 32 GB RAM and 8.5 ms access hard drive, the index creation for

the complete BTC data set took about 39 hours (only one core was used). The result-

ing index was about 1T in size including data. One simple entity search takes about

16 seconds. But the complete process of property-based data access may take up to

hours as multiple queries, entity and property retrievals are being performed. It was

possible to speed up the process by introducing caching mechanisms, for instance for

the property synonymy dictionaries. Computing the quality, principal components,

latent types and information gain for all properties on large data samples takes under

2 seconds. Nonetheless, we believe that in order to realize all operations in real-time a

Lucene-based distributed index leveraging Hadoop is necessary.

5 Related Work

Property-based data access and its suitability for programming the Semantic Web has

recently been discussed in [7, 19]. Challenges and open questions concerning a prop-

erty based approach are discussed in these papers. Sharing their view, we inspect the

Iteration

Movies ProSWIP Rand ProSWIP Rand ProSWIP Rand

0 0.49 0.49 0.78 0.78 0.26 0.26

1 0.57 0.5 0.93 0.78 0.25 0.26

2 0.55 0.51 0.91 0.74 0.12 0.03

3 0.58 0.53 0.96 0.89 0.11 0.03

4 0.65 0.59 1 0.95 0.07 0

Music

0 0.34 0.34 0.44 0.44 0.82 0.82

1 0.58 0.34 0.99 0.43 0.82 0.78

2 0.67 0.34 0.99 0.43 0.62 0.78

Books

0 0.21 0.21 0.37 0.37 0.71 0.71

1 0.32 0.21 0.83 0.38 0.07 0.07

2 0.52 0.22 0.93 0.39 0.07 0.07

3 0.59 0.25 0.89 0.43 0.04 0.07

4 0.65 0.25 1 0.43 0.03 0.07

Quality(Q) Precision Recall

practical feasibility of such an approach and address one of the main challenges: The

data quality problem.

Structural typing approaches are already employed in programming: Property-

based interfaces have been studied for OO languages [20] or extensible record sys-

tems for different language settings [21, 22]. But additional challenges like discover-

ing, comprehending and extending property sets to match the intended use arise in the

context of linked open data.

From a broader perspective, systems like Tipalo [23] performing automatic typing

for DBpedia entities are also relevant to our approach. Tipalo extracts types for enti-

ties based on their corresponding Wikipedia pages. But there are several entities in the

LOD cloud having no article on Wikipedia that would hence remain untyped (there

are about 14,199 diseases (International Statistical Classification of Diseases:

http://www.who.int/classifications/icd/en/) most of them documented through Pub-

Med but only about 3,000 of them featuring an actual article on Wikipedia). High

precision knowledge bases like YAGO [24] relying on the Wikipedia category system

and Infoboxes suffer from the same problem. In contrast, we build on structural simi-

larity independent of all-encompassing information sources to find latent, contextual-

ly relevant types.

6 Conclusions & Outlook

We believe that property-based data access represents a cornerstone in programming

with data from the Web. Our experiments show that such an approach suffers from

quality problems that the end user is not even aware of. With an entity homogeneity-

based quality metric and iterative feedback from the user on chosen properties, the

level of quality for the selected data can be controlled. Being highly correlated to

precision, the quality measure we introduced provides for transparency. With addi-

tional feedback on chosen properties, precision easily reaches values above 0.9, con-

firming the success of this approach.

The sparse nature of data in the LOD cloud severely affects recall. Leveraging high

quality property-based definitions, the recall problem can be tackled: We plan to use

properties that have been found suitable to extend the concept definition, not as filters,

but as features for entity ranking on structural similarity. This should increase the

robustness against missing values and have a positive effect on recall.

References

1. Barry, D., Stanienda, T.: Solving the Java Object Storage Problem. Computer. 31, 33–40

(1998).

2. Carroll, J.J., Reynolds, D., Dickinson, I., Seaborne, A., Dollin, C., Wilkinson, K.: Jena :

Implementing the Semantic Web Recommendations. In Proc. WWW. pp. 74–83. , New

York, USA (2004).

3. Völkel, M.: RDFReactor – From Ontologies to Programmatic Data Access. In Proc.

ISWC. (2005).

4. Tratt, L.: Compile-time meta-programming in a dynamically typed OO language. In Proc

of the Dynamic Languages Symposium (DLS), San Diego, California, USA (2005).

5. Stock, W.G.: Concepts and Semantic Relations in Information Science. Journal of the

American Society for Information Science and Technology. 61, 1951–1969 (2010).

6. Scheglmann, S., Gröner, G.: Property-based Typing for RDF-Access. In Proc. of

Workshop on Programming the Semantic Web. pp. 4–7. , Rio de Janeiro, Brasil (2012).

7. Scheglmann, S., Groener, G., Staab, S., Lämmel, R.: Incompleteness-aware programming

with RDF data. In Proc. of Workshop on Data Driven Functional Programming (DDFP).

11 (2013).

8. Cardelli, L.: Structural subtyping and the notion of power type. Proceedings of ACM

SIGPLAN-SIGACT symposium on Principles of programming languages POPL 88. pp.

70–79. ACM Press (1988).

9. Cafarella, M.J., Etzioni, O.: Navigating Extracted Data with Schema Discovery. In Proc of

Int. Workshop on Web and Databases (WebDB). , Beijing, China (2007).

10. Jaccard, P.: Nouvelles recherches sur la distribution orale. Bulletin Societe Vaudoise des

Sciences Naturelles. 44, 223–270 (1908).

11. Hancock, T., Jiang, T., Li, M., Tromp, J.: Lower Bounds on Learning Decision Lists and

Trees. Information and Computation. 126, 114–122 (1996).

12. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc.

San Francisco, San Francisco, CA, USA (1993).

13. Quinlan, J.R.: Simplifying decision trees. Int. Journal of ManMachine Studies. 27, 221–

234 (1987).

14. Gottron, T., Knauf, M., Scheglmann, S., Scherp, A.: A Systematic Investigation of Explicit

and Implicit Schema Information on the Linked Open Data Cloud. In Proc. of ESWC.

(2013).

15. Jolliffe, I.: Principal Component Analysis, (2nd Ed.). Springer Series in Statistics (2002).

16. Ball, G., Hall, D.: ISODATA: A novel method of data analysis and pattern classification.

(1965).

17. Tsoumakas, G., Katakis, I.: Multi Label Classification: An Overview. Int. Journal of Data

Warehousing and Mining. 3, 1–13 (2007).

18. Clare, A., King, R.D.: Knowledge Discovery in Multi-label Phenotype Data. In: De Raedt,

L. and Siebes, A. (eds.) Principles of Data Mining and Knowledge Discovery. 42–53.

Springer-Verlag (2001).

19. Scheglmann, S., Scherp, A., Staab, S.: Declarative Representation of Programming Access

to Ontologies. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., and Presutti, V. (eds.)

The Semantic Web: Research and Applications. pp. 659–673. Lecture Notes in Computer

Science (2012).

20. Gil, J.Y.: Whiteoak : Introducing Structural Typing into Java. October. 73–89 (2008).

21. Bracha, G., Lindstrom, G.: Modularity meets inheritance. In Proc. of Int. Conf. on

Computer Languages. pp. 282–290. IEEE (1992).

22. Kiselyov, O., Lämmel, R., Schupke, K.: Strongly typed heterogeneous collections. In Proc.

of the SIGPLAN Workshop on Haskell. 96–107 (2004).

23. Gangemi, A., Nuzzolese, A.G., Presutti, V., Draicchio, F., Musetti, A., Ciancarini, P.:

Automatic Typing of DBpedia Entities. In Proc. ISWC. pp. 65–81 (2012).

24. Suchanek, F.M., Weikum, G.: YAGO : A Core of Semantic Knowledge Unifying

WordNet and Wikipedia. In Proc. of WWW. Banff, Canada (2007).

